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Abstract

Learning and experience are known to improve our ability to make perceptual decisions. Yet, our understanding of the brain
mechanisms that support improved perceptual decisions through training remains limited. Here, we test the neurochemical and
functional interactions that support learning for perceptual decisions in the context of an orientation identification task. Using
magnetic resonance spectroscopy (MRS), we measure neurotransmitters (i.e., glutamate, GABA) that are known to be involved in
visual processing and learning in sensory [early visual cortex (EV)] and decision-related [dorsolateral prefrontal cortex (DLPFC)]
brain regions. Using resting-state functional magnetic resonance imaging (rs-fMRI), we test for functional interactions between
these regions that relate to decision processes. We demonstrate that training improves perceptual judgments (i.e., orientation
identification), as indicated by faster rates of evidence accumulation after training. These learning-dependent changes in deci-
sion processes relate to lower EV glutamate levels and EV-DLPFC connectivity, suggesting that glutamatergic excitation and
functional interactions between visual and dorsolateral prefrontal cortex facilitate perceptual decisions. Further, anodal transcra-
nial direct current stimulation (tDCS) in EV impairs learning, suggesting a direct link between visual cortex excitation and percep-
tual decisions. Our findings advance our understanding of the role of learning in perceptual decision making, suggesting that
glutamatergic excitation for efficient sensory processing and functional interactions between sensory and decision-related
regions support improved perceptual decisions.

NEW & NOTEWORTHY Combining multimodal brain imaging [magnetic resonance spectroscopy (MRS), functional connectivity]
with interventions [transcranial direct current stimulation (tDCS)], we demonstrate that glutamatergic excitation and functional
interactions between sensory (visual) and decision-related (dorsolateral prefrontal cortex) areas support our ability to optimize
perceptual decisions through training.

functional connectivity; learning; MR spectroscopy; perceptual decisions; transcranial direct current stimulation

INTRODUCTION

Making successful perceptual judgments entails integrating
multiple sources of sensory information over time (1, 2). For
example, when deciding whether we have spotted a friend in
a crowd, we accumulate information over time (e.g., as
they approach, their appearance, clothing, and gait become
clearer) and take into account not only the immediate sensory
input but also our previous experience and knowledge (e.g.,
the likelihood of them appearing there and then).

Computational investigations have advanced our under-
standing of perceptual decision making by using sequen-
tial sampling models to decompose behavioral responses
into decision processes (3, 4). In these sequential sampling
models, participants accumulate evidence for two alterna-
tive choices and make their response when a critical
amount of information (i.e., decision threshold) has been
obtained in favor of one choice over the other. Previous
work has implicated a network of regions in evidence
accumulation for perceptual decision making, including
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parietal (5), frontal (6), prefrontal (7, 8), and ventral pre-
motor (9) cortex.

Further, previous behavioral (10–12) and neuroimaging
(13–15) studies have proposed a role of learning in perceptual
decision making, showing that training enhances evidence
accumulation for perceptual judgments (e.g., discrimination
of visual features) (11, 14, 16–18). Yet, our understanding of
the brain mechanisms that alter decision processes through
training remains limited.

Here, we interrogate the neurochemical and functional
brain mechanisms that support our ability to improve our
perceptual decisions because of training. We focus on per-
ceptual learning, that is, our ability to improve our percep-
tual judgments with training. We used an orientation
identification task that involves identifying the orientation
of a Gabor grating from Gaussian noise (19). We modeled be-
havioral performance using the drift diffusion model (i.e., a
widely used sequential sampling model) (3, 4) to identify the
decision processes involved in orientation identification and
test the effect of training on these processes, rather than
overall task performance.

Visual perceptual learning has been shown to engage a
network of visual regions involved in sensory processing and
frontoparietal regions involved in decision making (for
reviews see Refs. 20, 21). In particular, training has been
shown to alter processing in both visual cortex (22–25) and
higher frontoparietal areas (14, 15, 26). Here we focus on
early visual cortex (EV) and the dorsolateral prefrontal cortex
(DLPFC), which is known to be functionally connected to EV
cortex (27) and involved in perceptual decisionmaking (7, 8).

Further, previous studies have investigated the role of
excitatory [glutamate (Glu)] and inhibitory [c-aminobutyric
acid (GABA)] neurotransmitters in visual processing and
learning. Thanks to recent advances in magnetic resonance
spectroscopy (MRS), it is now possible to reliably measure
these neurotransmitters noninvasively in the human brain.
MRS studies have shown that glutamatergic excitation,
which is known to play a key role in long-term potentiation
induction and plasticity (for a review see Ref. 28), relates to
visual cortex activation (29, 30), contrast sensitivity (31),
motion discrimination (32), and object recognition (33).
GABAergic inhibition in the visual cortex, as measured by
MRS, has been implicated in orientation discrimination tasks
(34–36) and visual perceptual learning (37–39). Further, the
neurochemical balance between excitation and inhibition has
been suggested to play a key role in brainwide network inter-
actions (40). Human MRS studies have linked Glu and GABA
concentrations at rest with functional connectivity as meas-
ured by resting-state functional magnetic resonance imaging
(rs-fMRI) (41–44), consistent with the role of glutamatergic ex-
citation and GABAergic inhibition in neural dynamics.

Here, we ask whether neurochemical processing within
visual and decision-related areas and functional interactions
between these regions relate to improved perceptual deci-
sions due to training. Using MRS to measure neurotransmit-
ter levels at rest, we test whether Glu and GABA (referred to
as GABAþ to account for coedited macromolecules) levels in
EV and DLPFC relate to learning-dependent changes in deci-
sion processes. Using rs-fMRI, we test whether functional
connectivity between these regions relates to glutamatergic
excitation or GABAergic inhibition and learning-dependent

changes in decision processes. Our results demonstrate that
training on an orientation identification task enhances infor-
mation accumulation (i.e., improved drift rate). This behav-
ioral improvement relates to lower EV glutamatergic excitation
and functional connectivity between EV and DLPFC, suggest-
ing that local excitatory processing in visual cortex and interac-
tions between visual and decision-related areas contribute to
optimizing perceptual decisions through training. Moving
beyond correlational evidence, we use transcranial direct cur-
rent stimulation (tDCS) to perturb cortical excitability during
training on the orientation identification task. Our results
show that increasing excitation with anodal stimulation of the
early visual cortex impairs learning in the orientation identifi-
cation task, suggesting that low levels of excitation in the visual
cortex are directly linked to efficient sensory processing for
improved perceptual decisions.

MATERIALS AND METHODS

Participants

Twenty-five participants (12 female, 13 male; mean age
24±3.7 yr) took part in themain study, and forty participants
(13 female, 27 male; age 21± 2.3 yr) took part in the tDCS
experiment (20 in the Anodal group and 20 in the Sham
group). All participants were right-handed, had normal or
corrected-to-normal vision, did not receive any prescription
medication, and gave written informed consent. The study
was approved by the University of Cambridge Research
Ethics committee (PRE.2017.57).

Experimental Design

Participants in the main study took part in one behavioral
session in the laboratory and two brain imaging scans
(before behavioral training) comprising rs-fMRI and MRS.
Participants in the tDCS study took part in one behavioral
session with stimulation in the laboratory.

Stimuli and Task

Experiments were controlled with MATLAB and Psycho-
physics Toolbox 3.0 (45, 46). For the behavioral session,
stimuli were presented on a 21-in. CRT monitor (1,600�
1,200-pixel resolution, 60-Hz frame rate) with gamma cor-
rection at a distance of 50 cm. Stimuli comprised oriented
Gabor patches that were presented against a uniform gray
background. Gabor patches of random phase had a fixed di-
ameter of 12�, SD of the Gaussian envelope of 2�, contrast of
0.03, and spatial frequency of 1 cycle/�. Gaussian-distributed
noise patterns had a contrast of 0.2. This contrast value was
defined based on a pilot study that showed 60% accuracy in
orientation identification before training. An assessor inde-
pendent from the researchers who ran the experiments
monitored the pretraining performance during data collec-
tion. The first set of eight participants of the Anodal group
were tested on the same contrast level as participants in the
main experiment (i.e., 0.03). However, they showed lower
pretraining accuracy than the expected 60% (mean accu-
racy = 55.9%). Therefore, we increased the contrast of the
stimuli to 0.035 for the remaining participants in the tDCS
experiment (12 for Anodal, 20 for Sham). Statistical analyses
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with and without the participants who performed the task
with lower contrast showed similar results.

We tested participants on an orientation identification
task (Fig. 1A) during a test block (100 trials; no feedback) fol-
lowed by five training blocks (100 trials each, with per-trial
feedback). Each trial began with a fixation cross for a jittered
duration between 300 and 600 ms (in increments of 100 ms)
followed by the noise patterns and Gabor patches. Two
Gabor frames (i.e., 33 ms) were presented in between pairs of
noise frames (i.e., 4 noise frames were presented before and
after the Gabor frames) to ensure temporal integration of the
Gabor and noise patterns (19). Participants were asked to fix-
ate and judge the orientation (left vs. right) of the Gabor
patch (45� or 135�; Fig. 1A).

MRI Data Acquisition

We collected MRI data on a 3-T Siemens PRISMA scanner
(Wolfson Brain Imaging Unit, Cambridge) using a 32-channel
head coil. We acquired longitudinal relaxation time (T1)-
weighted (T1w) structural data [magnetization-prepared
rapid gradient echo (MPRAGE); repetition time (TR) = 2 s;
echo time (TE) = 2.98 ms; number of slices = 176; voxel size =
1 mm isotropic) and echo-planar imaging (EPI) data at rest
(gradient echo-pulse sequences; TR = 0.727 s; TE = 34.6 ms;
number of slices = 72; voxel size = 2 mm isotropic; multiband
factor = 8; flip angle = 48�; number of volumes = 825; dura-
tion = 10 min; whole brain coverage). EPI data comprised
two runs (10 min per run), during which participants fixated
on a cross in themiddle of the screen.

We collected MRS data with a 32-channel head coil and a
MEGA-PRESS sequence (47): TE=68 ms; TR=3,000 ms; 256
transients of 2,048 data points were acquired in 13-min
experiment time; a 14.28-ms Gaussian editing pulse was
applied at 1.9 (ON) and 7.5 (OFF) ppm; water unsuppressed
16 transients [Supplemental Table S1 (all Supplemental
Material is available at https://doi.org/10.17863/CAM.82236),
following consensus guidelines (48)]. Water suppression was

achieved by using variable power with optimized relaxation
delays and outer volume suppression. We conducted auto-
mated shimming followed by manual shimming. We
acquired spectra from twoMRS voxels (25� 25� 25mm3): in
early visual cortex (EV voxel) and the left dorsolateral pre-
frontal cortex (DLPFC voxel) (Fig. 2A). We manually posi-
tioned the MRS voxels using anatomical landmarks on each
participant’s T1 scan, ensuring that voxel placement was
consistent across participants. The EV voxel was placed
medially in the occipital lobe with the lower face aligned
with the cerebellar tentorium and as posterior as possible
toward the occipital pole given the voxel dimensions. The
DLPFC voxel was placed within the left hemisphere and
above the superior margin of the lateral ventricles. The
center of gravity for the EV voxel was x = 0.8 ± 1.8 mm, y =
�80.2 ± 2.4 mm, z = 8.2 ± 2.9 mm in MNI space (partially
covering V1 and V2 regions) and for the DLPFC voxel was
x = �24.4 ± 2.0 mm, y = 33.0 ± 7.0 mm, z = 25.1 ± 6.2 mm in
MNI space. The order of the voxels was counterbalanced
across participants. During the MRS acquisitions partici-
pants fixated on a cross in the middle of the screen to en-
courage similar levels of alertness across participants.

tDCS Data Acquisition

We used a multichannel transcranial electrical stimulator
(neuroConn DC-STIMULATOR MC, Ilmenau, Germany) to
deliver anodal or sham stimulation in a double-blind man-
ner. We used a pair of rubber electrodes (3� 3-cm2 stimulat-
ing electrode, 5� 5-cm2 reference electrode), placed in
square sponges that had soaked in saline. For anodal stimu-
lation, 1-mA current was ramped up over 10 s, held at 1 mA
for the duration of training (�25 min), and subsequently
ramped down over 10 s. For sham stimulation, the current
ramped up (10 s) and down (10 s) in the beginning of the ses-
sion. To achieve consistent electrode placement across par-
ticipants when targeting the early visual cortex, we used a
10-20 System EEG cap as reference and centered the anode
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Figure 1. Behavioral task and performance. A: orientation
identification task. Participants judged the orientation of
a Gabor patch presented (45� or 135�) among Gaussian
noise patterns. B: mean performance across participants
for the pretest (Pre) and training (tr1–tr5) blocks. C and D:
mean drift rate (C) and threshold (D) derived from diffu-
sion modeling [drift rate, decision threshold, nondecision
time (DR-TH-Ter) model] across participants for the pre-
test and training blocks. Error bars indicate SE across
participants. We used the Bayesian information criterion
(BIC) for 5 constructed models and selected the DR-TH-
Ter model with the lower BIC value (i.e., null model:
3,246.22, DR model: 3,267.02, DR-TH model: 3,234.13,
DR-TH-Ter model: 3,228.73, full model: 3,308.36).
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on Oz and the cathode on Cz. This montage has been exten-
sively used in tDCS studies targeting the early visual cortex
(e.g., Refs. 49, 50) and has been shown to successfully
increase excitability in this region (51).

Data Analysis

Behavioral data analysis.
Three participants from the main study and one from the
tDCS experiment (from the Sham group) were excluded

because of high starting performance (over 75%). We further
excluded seven participants from the tDCS experiment (2
from the Anodal group and 5 from the Sham group) because
of atypical response times (RTs) (i.e., RT < 0.2 s) that sug-
gested the participants did not engage with the task. This
resulted in N = 22 for the main study and N = 32 for the tDCS
experiment (N = 18 for Anodal, N = 14 for Sham), consistent
with sample sizes in our previous studies (37). After previous
studies using a single training session (38) we calculated
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Figure 2. Relationship of magnetic resonance spectroscopy (MRS) glutamate and GABAþ to behavior. A: MRS voxels and spectra in the early visual cor-
tex (EV) and dorsolateral prefrontal cortex (DLPFC). We illustrate a group MRS mask (sagittal, axial view) that covers a cortical area that is common in at
least 50% of the participants’ MRS voxels (red, EV; yellow, DLPFC). Sample spectra from the MRS voxels show the LCModel fit, residual, and respective
fits for GABAþ , glutamate (Glu), glutamine, glutathione, and N-acetylaspartate (NAA). B: multiple regression of EV Glu with behavior: significant negative
linear relationship with drift rate (DR) but not decision threshold (TH) change (max-training block minus pretraining block). C: no significant linear relation-
ship of EV GABAþ with behavior. D: no significant linear relationship of DLPFC Glu with behavior. E: no significant linear relationship of DLPFC GABAþ
with behavior. Significant results are indicated by filled symbols and nonsignificant results by open symbols.
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performance accuracy per participant and compared accu-
racy in the pretraining block to accuracy in the max-training
block (i.e., we selected the block with the higher accuracy
between the last 2 training blocks per participant to account
for potential fatigue effects toward the end of the training).

Further, to model processes related to decision making,
we fitted the behavioral data for each block with the
Diffusion Model Analysis Toolbox (DMAT; Refs. 52, 53). The
drift diffusion model (DDM) consisted of seven parameters:
1) The mean drift rate (DR) and 2) across-trial variability (s)
in drift rate indicate stimulus discriminability; that is, a
higher drift rate denotes faster and more accurate responses.
The drift rate varies from trial to trial, following a normal dis-
tribution with mean DR and standard deviation s. 3) The de-
cision threshold (TH) controls the speed-accuracy trade-off
and represents the amount of evidence required for making
a decision. A higher decision threshold denotes slower but
more accurate responses, suggesting that participants tend
to make more cautious decisions. 4) The mean starting point
(z) and 5) variability of starting point (sz) reflect the observ-
er’s prior bias at stimulus onset. In the case of the diffusion
model, the starting point of the decision process at stimulus
onset is assumed to vary randomly from trial to trial, accord-
ing to a uniform distribution withmean z and standard devi-
ation sz. This random variation may reflect, for example, the
influence of recent preceding trials. 6) The mean nondeci-
sion time (Ter) and 7) variability of nondecision time (st)
denote the time that includes early encoding processes (i.e.,
before the diffusion decision process) and late motor
response processes (i.e., after the diffusion decision process).
The nondecision time is assumed to vary randomly across
trials according to a uniform distribution with mean Ter and
standard deviation st. The diffusion model assumes that the
observed response time is the sum of the nondecision com-
ponent and the diffusion decision component.

Based on previous studies (11, 12), we constructed five dif-
ferent models.Model 1 assumed that learning did not change
any parameter of the model (null model); model 2 assumed
that learning changed drift rate (DR model); model 3
assumed that learning changed drift rate and decision
threshold (DR-TH model); model 4 assumed that learning
changed drift rate, decision threshold, and nondecision time
(DR-TH-Ter model); model 5 assumed that learning changed
all the parameters of the model (full model). We used the
Bayesian information criterion (BIC) for the five constructed
models and selected model DR-TH-Ter that had the lowest
mean BIC value across participants (i.e., null model:
3,246.22, DR model: 3,267.02, DR-TH model: 3,234.13, DR-
TH-Ter model: 3,228.73, full model: 3,308.36). Quantile-prob-
ability plots were used to inspect the model fitting. Data
from one participant in the tDCS study (from the Anodal
group) were excluded from further analysis as the model fit
did not converge.

MRS data analysis.
We preprocessed the MRS data with MRspa v1.5c (www.
cmrr.umn.edu/downloads/mrspa/). We applied eddy cur-
rent, frequency, and phase correction before subtracting the
average ON and OFF spectra, resulting in edited spectra. We
used LCModel (54) to quantify metabolite concentrations by
fitting model spectra of glutamate (Glu), glutamine (Gln),

c-aminobutyric acid (GABA), glutathione (GSH), and N-ace-
tylaspartate (NAA) to the edited spectra (Fig. 2A). The model
spectra of all metabolites were generated based on previ-
ously reported chemical shifts and coupling constants
using the GAMMA/PyGAMMA simulation library of VESPA
(Versatile Simulation, Pulses and Analysis, Ref. 55) for carry-
ing out the density matrix formalism. A 20 � 20 spatial ma-
trix was used to simulate the spatial variations inside and
outside the nominal PRESS dimensions. Simulations were
performed with the same radio frequency (RF) pulses and
sequence timings used on our 3-T scanner.

We focused on glutamate rather than glutamine, as it is
the primary excitatory neurotransmitter and it is known to
play a key role in brain plasticity and learning (56).
Glutamate has been shown to be separable from glutamine
and reliably quantified when measured with MEGA-PRESS
at 3 T (57) and the spectra are fitted using LCModel (58, 59).
Our glutamate measurements are in agreement with the
spectral quality criteria outlined in previous work (57).
Following these criteria, we were able to distinguish gluta-
mate from glutamine for most participants. We conducted
additional control analyses, excluding data in cases that Gln
could not be fit (n = 4, EV voxel).

We refer to GABA concentration as “GABAþ ,” as MRS
measurements of GABA with MEGA-PRESS include coedited
macromolecules (60). We referenced Glu and GABAþ con-
centrations to the concentration of water and validated our
findings by referencing Glu and GABAþ to NAA to ensure
that our results were not driven by the chosen reference (61).

All spectra had linewidth below 10 Hz and Glu and
GABAþ Cram�er–Rao lower bound (CRLB) values smaller
than 10%. DLPFC data for five participants were excluded
because of lipid contamination, as detected by visual inspec-
tion by two independent reviewers (P. Frangou, J. J.
Ziminski), resulting in N = 22 for EV and N = 17 for DLPFC.
Signal-to-noise ratio (SNR) was computed with LCModel as
the amplitude of the NAA peak in the difference spectrum
divided by twice the root mean square of the residual signal
(54). We report average concentrations of Glu and GABAþ ,
in addition to quality indexes (CRLB, linewidth, SNR), per
MRS voxel (Supplemental Table S2). To control for potential
differences in data quality across participants, we performed
control analyses that accounted for variability in absolute
CRLB (62), linewidth, and SNR across participants.

Further, we conducted whole brain tissue type segmenta-
tion of the T1-weighted structural scan and calculated the
percentage of gray matter (GM), white matter (WM), and cer-
ebrospinal fluid (CSF) voxels in each MRS voxel. We then di-
vided the Glu and GABAþ concentrations by [1 � CSF
fraction] to ensure that our results were not driven by vari-
ability in tissue composition within the MRS voxel across
participants and used these tissue-corrected values in fur-
ther analyses.

rs-fMRI data preprocessing.
We preprocessed the rs-fMRI data in SPM12.3 (v6906; www.
fil.ion.ucl.ac.uk/spm/software/spm12/), following the Human
Connectome Project (HCP) pipeline for multiband data (63).
In particular, we first coregistered (nonlinear) the T1w struc-
tural images (after brain extraction) to MNI space to ensure
that all participant data were in the same stereotactic space
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for statistical analysis. We then 1) corrected the EPI data for
any spatial misalignments between EPI volumes due to head
movement (i.e., aligned each run to its single-band reference
image), 2) coregistered the second EPI run to the first run
(rigid body) to correct any spatial misalignments between
runs, 3) coregistered the first EPI run to the structural image
(rigid body), and 4) normalized them toMNI space for subse-
quent statistical analyses (applying the deformation field of
the structural images). Data were only resliced after MNI
normalization to minimize the number of interpolation
steps. After MNI normalization, data were 5) skull-stripped,
6) spatially smoothed with a 4-mm Gaussian kernel to
improve the signal-to-noise ratio and the alignment between
participant data (2 times the voxel size; Ref. 64), and 7) wave-
let despiked to remove any secondary motion artifacts (65)
and 8) had linear drifts removed (linear detrending due to
scanner noise). Slice timing correction was not applied, fol-
lowing previous work on fast TR (subsecond) acquisition
protocols (63). Data from four participants were excluded
from further analysis because of head movement-related
artifacts during the rs-fMRI acquisition, as measured by
wavelet despiking [spike percentage higher than 10% (65)],
resulting in a total ofN = 18.

Next, we applied spatial group independent component
analysis (ICA) using the Group ICA fMRI Toolbox (GIFT
v3.0b) (http://mialab.mrn.org/software/gift/) to identify and
remove components of noise. Principal component analysis
was applied for dimensionality reduction, first at the subject
level and then at the group level. The minimum description
length criteria (66) were used to estimate the dimensionality
and determine the number of independent components,
resulting in 34 independent components. The ICA estima-
tion (Infomax) was run 20 times, and the component stabil-
ity was estimated with ICASSO (67). Following recent work
on back-reconstruction methods for ICA denoising at the
group level (68), we used group information guided ICA
(GIG-ICA) back-reconstruction to reconstruct subject-spe-
cific components from the group components. We visually
inspected the results and identified noise components
according to published procedures (69). Using consensus
voting among three experts (V. Karlaftis, P. Frangou, J.
Giorgio), we labeled 11 of the 34 components as noise that
captured signal from veins, arteries, CSF pulsation, suscepti-
bility, andmultiband artifacts.

To clean the fMRI signals from motion artifacts and the
noise components, we followed a soft cleanup ICA denoise
approach (70). That is, we first regressed out the motion pa-
rameters (translation, rotation, and their squares and deriva-
tives; Ref. 71) from each voxel and ICA component time
course. Second, we estimated the contribution of each ICA
component to each voxel’s time course (multiple regression).
Finally, we subtracted the unique contribution of the noise
components from each voxel’s time course to avoid removing
any shared signal between neuronal and noise components.
We did not include the global signal as a nuisance regressor,
as it has been shown to capture behaviorally relevant infor-
mation (72) and neuronal signals (for review see Ref. 73). After
ICA denoise, the data were high-pass filtered at 0.01 Hz and
treated for serial correlations using the FAST autoregressive
model (74, 75), and the residual time course from this step
was used for all subsequent connectivity analyses.

Functional connectivity analysis.
We computed functional connectivity between the two MRS
voxels. First, we computed the overlap across participant
MRS voxels for EV and DLPFC separately and created group
MRS masks that included voxels present in at least 50% of
the participants’ MRS voxels. Then, for each participant and
region of interest (ROI), we computed the first eigenvariate
across all gray matter voxels within the ROI to derive a single
representative time course per ROI.

We computed the functional connectivity between the EV
and the DLPFC MRS voxels as the Pearson correlation
between the eigenvariate time course from each of the MRS
masks. We then applied Fisher z-transform to the correlation
coefficient and averaged across runs to derive an EV-DLPFC
connectivity value per participant. To test for specificity of
the EV-DLPFC connectivity results, we computed the func-
tional connectivity between EV and a control area [primary
motor cortex (M1)]. We defined a left M1mask of equal size to
the MRS masks based on anatomical coordinates (MNI coor-
dinates [�36,�26, 48]).

Statistical analysis.
To test for within-subject differences across measurements,
we conducted a repeated-measures ANOVA in SPSS. For post
hoc pairwise comparisons we tested for significance at P =
0.025 (Bonferroni corrected for 2 statistical tests). For testing
the relationship of two or more variables, we used robust
least-squares regression (robustfit function in MATLAB) for
reweighting potential outliers. In particular, we used multi-
ple regression models with two independent variables (DR
and TH or Glu and GABAþ ) to minimize the number of sta-
tistical tests. Before performing a multiple regression, we
ensured that the independent variables are not collinear. For
all control analyses, we used a simple linear regression
model with the variable of interest (i.e., the variable that
showed a significant relationship) and tested for significant
differences between predictors. For easier interpretation of
the results, we also report a standardized r coefficient by
converting the regression’s t statistic with the following for-
mula: r ¼ signðtÞ�

ffiffiffiffiffiffiffiffiffiffiffi
t2

t2 þdf

q
. For visualization purposes, we

plot the fitted lines according to the following formula: y1,2 =
b0 þ b1,2 ·x1,2 þ b2,1 · mean(x2,1), where yi is the expected out-
come value for the ith predictor, b0 is the beta weight for the
constant term, bi is the weight for the ith predictor, and xi is
the vector of the ith predictor. In line with previous MRS
studies (76, 77), exploratory associations between additional
functional connectivity measures (e.g., intrinsic connectiv-
ity) and our MRS and learning measures were assessed.

RESULTS

Training Alters Perceptual Decision Processes

We tested participants on an orientation identification task
during a pretraining test block (without feedback) and five
training blocks (with per-trial feedback) (Fig. 1A). On each
trial, participants were asked to identify the orientation (45�

or 135�) of a Gabor grating that was masked with Gaussian
noise. Our results showed that participants improved in their
judgments within a single training session (Fig. 1B), as indi-
cated by significant differences in performance during
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training [repeated-measures ANOVA: main effect of block: F
(5,105) = 3.04, P = 0.013]. In particular, following previous
studies (38) using a single training session, we compared per-
formance (accuracy) in the pretraining block to maximum
training performance (max-training; i.e., performance at
the training block with the higher accuracy between the last 2
training blocks per participant). Our results showed signifi-
cantly higher performance after training [t(21) = 4.43, P <
0.001], consistent with previous reports showing behavioral
improvement for early learning (i.e., within a single training
session; for a review see Ref. 78).

We next asked whether training alters processes related to
decision making. We modeled the data with five different
drift diffusion models following previous work (11, 18). Using
BIC as in previous studies (11, 12), we selected the model with
the lowest mean BIC value across participants. We then
extracted the following parameters related to decision proc-
esses from this model (model 4: DR-TH-Ter model): 1) drift
rate (DR), indicating the rate at which participants accumu-
late information for making a perceptual judgment, 2) deci-
sion threshold (TH), indicating the amount of information
required to make a judgment, and 3) nondecision time (Ter),
indicating the time for early encoding processes and late
motor response processes. Comparing the model parameters
between pretraining and max-training blocks, we found that
drift rate significantly increased after training [t(21) = 4.48,
P < 0.001; Fig. 1C] and decision threshold significantly
decreased after training [t(21) = �3.85, P = 0.001; Fig. 1D],
whereas no significant changes were observed for the nonde-
cision time due to training [t(21) = 1.08, P = 0.293]. These
results suggest that training improves the rate at which par-
ticipants accumulate information and reduces the amount
of evidence they require for making a decision, rather than
non-decision-related processes.

Glutamate Relates to Evidence Accumulation for
Perceptual Decision Making

Recent work has linked visual cortex glutamatergic excita-
tion and GABAergic inhibition to perceptual judgments and
learning (for a review see Ref. 79). Here, we tested the role of
excitatory (Glu) and inhibitory (GABA) neurotransmitters in
perceptual decision making processes, as identified by diffu-
sion modeling of performance in the orientation identifica-
tion task. We measured Glu and GABAþ at rest (i.e.,
participants had their eyes open and fixated on a central
cross) from voxels placed in 1) the early visual cortex (EV
MRS voxel; Fig. 2A), which is known to be involved in orien-
tation discrimination and learning (24, 80), and 2) the left
dorsolateral prefrontal cortex (DLPFC MRS voxel; Fig. 2A),
which is known to be involved in the readout of sensory in-
formation from visual cortex, transforming input to decision
variables (81), and accumulating the decision variables dur-
ing perceptual decisionmaking (7, 8). Further, previous stud-
ies have shown that activity in DLPFC correlates with drift
rate (7) and disruption of processing in left DLPFC with brain
stimulation impairs performance accuracy, corresponding to
decreased drift rate (8). To test the link between these neuro-
transmitters and learning-dependent changes in decision
processes due to training on the orientation identification
task, we related Glu and GABAþ levels in these regions with

change (i.e., max-training block minus pretraining block) in
the drift diffusion model parameters that showed significant
differences due to training (multiple regression with DR and
TH as independent variables).

We found a significant negative relationship between EV
Glu and DR change after training but not TH change [multi-
ple regression: DR: b = �2.13, t(19) = �2.83, r = �0.54, P =
0.011; TH: b = �0.41, t(19) = �0.24, r =�0.05, P = 0.815; Fig.
2B]. The relationship of EV Glu with DR change was signifi-
cantly different from the relationship of EV Glu with TH
change (z = �2.05, P = 0.041; EV Glu–DR: r = �0.59; EV Glu–
TH: r = 0.09; DR–TH: r = �0.36), suggesting that EV Glu
relates to DR rather than TH change. We did not observe any
significant relationship between 1) EV GABAþ and DR
change or TH change [multiple regression: DR: b = �0.44, t
(19) = �0.76, r = �0.17, P = 0.458; TH: b = �1.83, t(19) = �1.37,
r = �0.30, P = 0.187; Fig. 2C)]; 2) DLPFC Glu and DR change
or TH change [multiple regression: DR: b = 1.04, t(14) = 1.17,
r = 0.30, P = 0.262; TH: b = �4.46, t(14) = �1.10, r = �0.28, P =
0.291; Fig. 2D]; and 3) DLPFC GABAþ and DR change or TH
change [multiple regression: DR: b = �0.02, t(14) = �0.04, r =
�0.01, P = 0.969; TH: b = �3.17, t(14) = �1.54, r = �0.38, P =
0.146; Fig. 2E]. The relationship between EV Glu and DR
change remained significant when we performed the follow-
ing control analyses: 1) referenced Glu to NAA rather than
water [b = �1.71, t(20) = �3.11, r = �0.57, P = 0.006]; 2)
excluded four participants because of poor Gln fit [b = �2.47,
t(16) = �3.51, r = �0.66, P = 0.003]; and 3) controlled for MRS
data quality [absolute CRLB: b = �2.58, t(20) = �4.75, r =
�0.73, P < 0.001; linewidth: b = �1.78, t(20) = �3.00, r =
�0.56, P = 0.007; SNR: b = �2.27, t(20) = �3.97, r = �0.66, P =
0.001]. Further, the relationship of EV Glu with DR change
was significantly different from the relationship of EV
GABAþ with DR change (z = �2.07, P = 0.038; EV Glu–DR:
r = �0.59; EV GABAþ–DR: r = �0.09; EV Glu–GABAþ : r =
0.26), suggesting that EV Glu rather than GABAþ relates to
information accumulation. There was no significant rela-
tionship between EV Glu and DR before training [b = 0.94, t
(20) = 1.01, r = 0.22, P = 0.324], suggesting that our results
could not be simply due to variability in pretraining per-
formance. These results indicate a significant contribution
of DR change to EV Glu, suggesting that faster rates of infor-
mation accumulation after training relate to lower glutama-
tergic excitation in early visual cortex.

Visual-DLPFC Functional Connectivity for Perceptual
Decision Making

Previous work has shown that functional connectivity at
rest predicts individual variability in a range of tasks (for
reviews see Refs. 82, 83), including perceptual learning (38,
84). Further, previous studies have linked functional connec-
tivity in visual and frontal cortex to perceptual judgments
and learning-dependent plasticity (for reviews see Refs. 85,
86). Here, we tested whether functional interactions between
early visual cortex and DLPFC, as measured by rs-fMRI,
relate to decisionmaking processes and neurochemical proc-
essing (glutamatergic, GABAergic) when training on an ori-
entation identification task.

First, we tested whether functional connectivity between
EV and DLPFC relates to drift rate and decision threshold
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(multiple regression with DR and TH as independent varia-
bles). We measured functional connectivity as the correla-
tion between rs-fMRI time courses from gray matter voxels
within the EV and DLPFC voxels (EV-DLPFC connectivity).
We observed a significant negative relationship between EV-
DLPFC functional connectivity and DR change but not TH
change [multiple regression: DR: b = �2.32, t(15) = �2.94, r =
�0.60, P = 0.010; TH: b = 1.91, t(15) = 0.63, r = 0.16, P = 0.538;
Fig. 3A). The relationship of EV-DLPFC functional connec-
tivity with DR change was significantly different from the
relationship of EV-DLPFC functional connectivity with TH
change (z = �2.03, P = 0.043; EV-DLPFC connectivity–DR:
r = �0.60; EV-DLPFC connectivity–TH: r = 0.07; DR–TH: r =
�0.36), suggesting that EV-DLPFC functional connectivity
relates to DR rather than TH change. There was no signifi-
cant relationship between EV-DLPFC functional connectiv-
ity and DR before training [b = 0.59, t(16) = 0.66, r = 0.16, P =
0.521], suggesting that our results could not be simply due to

variability in pretraining performance. We did not observe a
significant relationship of functional connectivity between
early visual cortex and a control region (M1) with DR change
[b = �1.57, t(16) = �1.64, r = �0.38, P = 0.121] or when control-
ling for the relationship with EV-DLPFC connectivity [b =
0.41, t(16) = 0.31, r = 0.08, P = 0.762], suggesting that our
results are specific to EV-DLPFC connectivity. Thus, our
results indicate a significant contribution of DR change to
EV-DLPFC connectivity, suggesting that faster rates of infor-
mation accumulation due to training relate to lower func-
tional connectivity between early visual and dorsolateral
prefrontal cortex.

Second, we tested whether EV-DLPFC functional connec-
tivity relates to glutamatergic or GABAergic processing in EV
and DLPFC (multiple regression with Glu and GABAþ as in-
dependent variables). We observed a significant positive
relationship between EV-DLPFC connectivity and EV Glu
but not EV GABAþ [multiple regression: EV Glu: b = 0.34, t
(15) = 2.18, r = 0.49, P = 0.046; EV GABAþ : b = 0.61, t(15) =
1.89, r = 0.44, P = 0.078; Fig. 3B). The relationship of EV-
DLPFC functional connectivity with EV Glu was not signifi-
cantly different from that of EV-DLPFC functional connec-
tivity with EV GABAþ (z = 0.22, P = 0.824; EV-DLPFC
connectivity–EV Glu: r = 0.53; EV-DLPFC connectivity–EV
GABAþ : r = 0.48; EV Glu–EV GABAþ : r = 0.26). We did not
observe any significant relationships between EV-DLPFC
and DLPFC Glu or DLPFC GABAþ [multiple regression:
DLPFC Glu: b = �0.19, t(12) = �0.64, r = �0.18, P = 0.531;
DLPFC GABAþ : b = �0.14, t(12) = �0.22, r = �0.06, P =
0.826; Fig. 3C). The relationship between EV-DLPFC connec-
tivity and EV Glu remained significant when we performed
the following control analyses: 1) referenced Glu to NAA
rather than water [b = 0.66, t(16) = 2.88, r = 0.58, P = 0.011]; 2)
excluded four participants because of poor Gln fit [b = 0.51, t
(13) = 2.87, r = 0.62, P = 0.013]; and 3) controlled for MRS data
quality [absolute CRLB: b = 0.55, t(16) = 3.07, r = 0.61, P =
0.007; linewidth: b = 0.42, t(16) = 2.56, r = 0.54, P = 0.021;
SNR: b = 0.44, t(16) = 2.74, r = 0.57, P = 0.015]. Further, we
found no significant relationship between EV-M1 functional
connectivity and EV Glu [b = 0.33, t(16) = 1.72, r = 0.40, P =
0.104] or when controlling for the relationship with EV-
DLPFC connectivity [b = �0.08, t(16) = �0.33, r = �0.08, P =
0.744], suggesting that our results are specific to EV-DLPFC
connectivity. Thus, our results indicate a significant con-
tribution of EV Glu to EV-DLPFC connectivity, suggesting
that lower early visual cortex excitation relates to lower
functional connectivity between early visual and dorsolat-
eral prefrontal cortex to support faster rates of information
accumulation.

Increasing Excitation in the Visual Cortex Impairs
Learning

To extend beyond correlational approaches, we employed
anodal tDCS to perturb cortical excitability during training
on the orientation identification task. Anodal tDCS is an
excitatory stimulation protocol that has been shown to
increase cortical excitability in visual (87) andmotor (88) cor-
tex. We have previously shown that anodal tDCS results in
improved learning in the context of a visual task that
requires enhanced excitability (37). As our main experiment
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Figure 3. Relationship of early visual cortex (EV)-dorsolateral prefrontal
cortex (DLPFC) functional connectivity to behavior and glutamate (Glu).
EV-DLPFC functional connectivity (Fisher’s z), as measured by resting-
state functional magnetic resonance imaging (rs-fMRI), shows a significant
negative linear relationship with drift rate (DR) but not decision threshold
(TH) change (multiple regression) (A), a significant positive linear relation-
ship with EV Glu but not EV GABAþ (B), and no significant linear relation-
ship with DLPFC Glu or GABAþ (C). Significant results are indicated by
filled symbols and nonsignificant results by open symbols.
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showed that lower visual cortex excitation relates to faster
drift rate after training on the orientation identification task,
we hypothesized that excitatory stimulation would impair
learning compared with sham stimulation.

To test this hypothesis, we trained two groups of participants
on the orientation identification task, one receiving anodal and
the other sham stimulation during training. As in the main
experiment, we compared accuracy, DR, and TH in the max-
training block against the pretraining block.We found that par-
ticipants who received anodal stimulation during training
showed lower improvement after training comparedwith those
who received sham stimulation. In particular, a repeated-meas-
ures ANOVA on accuracy showed a significant Group (Anodal,
Sham) � Block (pretraining, max-training) interaction [F(1,30)
= 4.68, P = 0.039; Fig. 4A] and post hoc comparisons showed
significant performance improvement after training (i.e.,
increased accuracy) for the Sham [t(13) = 3.23, P = 0.004] but
not the Anodal [t(17) = 0.95, P = 0.356] group.

Further, a repeated-measures ANOVA onDR showed a sig-
nificant Group (Anodal, Sham) � Block (pretraining, max-
training) interaction [F(1,29) = 8.39, P = 0.007; Fig. 4B]. Post
hoc comparisons showed significant changes in DR after
training (i.e., faster drift rate) for the Sham [t(13) = 3.07, P =
0.009] but not the Anodal [t(16) = �0.001, P = 0.999] group,
suggesting that participants in the Anodal group showed
slower drift rate after training compared with those in the
Sham group. Finally, a repeated-measures ANOVA on TH
showed a significant main effect of Block [F(1,29) = 10.59, P =
0.003; Fig. 4C] but no significant Group (Anodal, Sham) �
Block (pretraining, max-training) interaction [F(1,29) = 0.88,
P = 0.356], suggesting that the effect of the anodal stimula-
tion was specific to the rate of information accumulation.
Note that DR before training was not different between the
Anodal and Sham groups [Anodal vs. Sham: t(29) = 0.65, P =
0.521] and did not differ between the stimulation groups and
the main study [1-way ANOVA with Group (Anodal, Sham,
no stimulation): F(2,52) = 0.57, P = 0.571], suggesting that the
tDCS effects we observed after training were not due to vari-
ability across participants before training. We found similar
results in a smaller group of participants (after removing 6
participants from the Anodal group who performed the task
at a lower contrast level; see MATERIALS AND METHODS;
Supplemental Fig. S1); that is, repeated-measures ANOVAs

showed a significant Group � Block interaction for DR
[F(1,24) = 5.20, P = 0.032, post hoc for Anodal: t(11) = 1.09,
P = 0.301] but not TH [F(1,24) = 0.27, P = 0.610].

DISCUSSION
Training is known to improve perceptual decisions. Here,

we tested the neurochemical and functional connectivity
mechanisms that support improved perceptual decisions
due to training. Using MRS, we tested for glutamatergic and
GABAergic processing in early visual and decision-related
regions. Using rs-fMRI, we tested for functional interactions
between these regions that relate to decision processes.
Modeling behavioral performance with a drift diffusion
model, we demonstrate that training results in faster evi-
dence accumulation for orientation identification. These
learning-dependent changes in decision processes relate to
glutamate levels in visual cortex and functional connectivity
between visual and dorsolateral prefrontal cortex. Our
results suggest that efficient sensory processing and func-
tional interactions between sensory and decision-related
regions support improved decisionmaking through training.
Further, perturbing cortical excitability with tDCS disrupts
evidence accumulation during training, providing a direct
link between visual cortex excitation and perceptual deci-
sions. Our findings advance our understanding of the role of
learning in decisionmaking in the following respects.

First, we show that training improves behavioral perform-
ance on a visual orientation identification task by increasing
the information accumulation rate and reducing the infor-
mation needed to make a judgment. This is consistent with
previous studies showing that training facilitates informa-
tion accumulation for perceptual decision making (11, 12, 16,
18). Further, our results using single-session training are con-
sistent with previous work showing learning-dependent
changes early in the training (37, 38, 89).

Second, we demonstrate that glutamatergic excitation in
the early visual cortex relates to early learning-dependent
changes in sensory information processing during the deci-
sion processes (4, 14). Our results show that lower resting lev-
els of early visual cortex glutamate, rather than GABAþ ,
relate to increased drift rate after training, suggesting that
lower excitatory processing in visual cortex relates to faster
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information accumulation after training. This relationship is
shown to be specific to glutamatergic rather than GABAergic
processing in visual cortex. Although it remains debated
whether MRSmeasures synaptic versus extrasynaptic neuro-
transmitter concentration (90), some previous studies have
linked glutamatergic excitation to visual discriminations
(e.g., Refs. 31–33) and others GABAergic inhibition to per-
formance in visual tasks (34, 37–39, 91, 92). Our results pro-
vide evidence that cortical glutamatergic excitation, known
to relate to gain control mechanisms (93), is involved in in-
formation accumulation during decisionmaking.

Previous studies have implicated frontoparietal networks
in information accumulation during visual tasks (94–96); yet
recent evidence suggests that stimulus (rather than value)
information accumulation engages visual areas (97). Our
results highlight a key role for early visual cortex in decision
making processes, showing that glutamate in early visual
cortex (as measured by MRS at rest) relates to increased
accumulation of information after training. This relationship
was not significant for drift rate before training, suggesting a
link between excitatory processing in visual cortex and
improved perceptual decisions after training. It is possible
that optimizing information accumulation with training
relates to more efficient input processing in the visual cortex
that involves reduced excitatory processing. This interpreta-
tion is consistent with previous studies showing that lower
functional MRI (fMRI) signal in decision-related areas relates
to shorter duration of information accumulation (96).

Further, it is possible that in the presence of external noise
training reduces activity in visual cortex, as reflected by
lower levels of glutamatergic excitability and reduced learn-
ing under excitatory stimulation. These reduced levels of ex-
citation may correspond to exclusion of external noise (98),
resulting in improved behavioral performance at early stages
of learning (i.e., the single training protocol employed in our
study). The lack of a significant relationship between DLPFC
MRS measures and learning may suggest that learning, at
early stages of training (i.e., single training session), alters
stimulus processing (i.e., sensory processes) in early visual
cortex rather than information accumulation processes in
DLPFC. These results are consistent with the reverse hierar-
chy theory of perceptual learning, suggesting that training
on difficult tasks (as in the case of the task employed in our
study) engages early visual cortex (99).

Extending beyond correlational approaches, our tDCS
intervention provides evidence for a direct link between
excitatory processing in visual cortex and perceptual deci-
sions, showing that increasing levels of excitation in the
visual cortex through anodal tDCS disrupts information
accumulation during training. At first glance, our results
appear to be in contrast to previous studies showing
that anodal tDCS facilitates performance in visual percep-
tion and memory tasks that involve excitatory processing
(37, 100). Yet the disruption of learning we observed due to
anodal tDCS is in agreement with the negative relationship
between visual cortex excitation and rate of information
accumulation in the context of our orientation identifica-
tion task. Interestingly, previous work using transcranial
random noise stimulation (tRNS) during training on a fine
orientation discrimination task has shown that tRNS
improves performance compared to anodal or sham tDCS

(101, 102). Although its mechanism of action remains
debated, it is proposed that tRNS boosts signal detection
by introducing stochastic resonance and enhancing proc-
essing of subthreshold stimuli (103). As low-contrast signal
detection (103) and information accumulation in a percep-
tual decision making task (104) have been shown to benefit
from tRNS, it would be interesting to test in future studies
whether tRNS stimulation improves orientation identifica-
tion performance.

Third, we demonstrate that functional connectivity between
visual and decision-related regions relates to learning-depend-
ent changes in decision making processes and glutamatergic
processing in visual cortex. In particular, our results show that
lower visual-frontal connectivity relates to faster information
accumulation due to training and lower excitatory input proc-
essing, as indicated by lower levels of glutamate in visual cor-
tex. It is possible that faster information accumulation due to
training relates tomore efficient local processing in visual cor-
tex and interactions between visual and decision-related
regions. This is consistent with previous work implicating
local gain control mechanisms in visual cortex and reduced
interareal connectivity when learning to identify targets in
noise (38). Further, our findings highlight the role of neuro-
chemical mechanisms in network connectivity, consistent
with previous studies showing a link between glutamate lev-
els and functional connectivity at rest within and between
brain regions (42, 43).

In sum, our findings provide novel insights in understand-
ing the neurochemical mechanisms that underlie perceptual
decision making. Combining multimodal brain imaging
(MRS, rs-fMRI) with brain stimulation and computational
modeling reveals a key role of glutamatergic processing for
perceptual decisions. Our findings demonstrate that efficient
local processing related to glutamatergic excitation and
interareal connectivity supports improved perceptual deci-
sions through training. In this work, we focused onmeasure-
ments of neurotransmitters and connectivity at rest. Future
work combining tDCS with multimodal brain imaging dur-
ing training could investigate functional changes in neuro-
transmission to uncover its role in regulating network
activity and connectivity for learning and brain plasticity.
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