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Summary
Background Misdiagnosis of hemorrhage secondary to cerebral venous sinus thrombosis (CVST-ICH) as arterial-
origin spontaneous intracerebral hemorrhage (sICH) can lead to inappropriate treatment and the potential for
severe adverse outcomes. The current practice for identifying CVST-ICH involves venography, which, despite
being increasingly utilized in many centers, is not typically used as the initial imaging modality for ICH patients.
The study aimed to develop an explainable deep learning model to quickly identify ICH caused by CVST based on
non-contrast computed tomography (NCCT).

Methods The study population included patients diagnosed with CVST-ICH and other spontaneous ICH from
January 2016 to March 2023 at the Second Affiliated Hospital of Zhejiang University, Taizhou First People’s
Hospital, Taizhou Hospital, Quzhou Second People’s Hospital, and Longyan First People’s Hospital. A transfer
learning-based 3D U-Net with segmentation and classification was proposed and developed only on admission
plain CT. Model performance was assessed using the area under the curve (AUC), sensitivity, and specificity
metrics. For further evaluation, the average diagnostic performance of nine doctors on plain CT was compared
with model assistance. Interpretability methods, including Grad-CAM++, SHAP, IG, and occlusion, were
employed to understand the model’s attention.

Findings An internal dataset was constructed using propensity score matching based on age, initially including 102
CVST-ICH patients (median age: 44 [29, 61] years) and 683 sICH patients (median age: 65 [52, 73] years). After
matching, 102 CVST-ICH patients and 306 sICH patients (median age: 50 [40, 62] years) were selected. An
external dataset consisted of 38 CVST-ICH and 119 sICH patients from four other hospitals. Validation showed
AUC 0⋅94, sensitivity 0⋅96, and specificity 0⋅8 for the internal testing subset; AUC 0⋅85, sensitivity 0⋅87, and
specificity 0⋅82 for the external dataset, respectively. The discrimination performance of nine doctors interpreting
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CT images significantly improved with the assistance of the proposed model (accuracy 0⋅79 vs 0⋅71, sensitivity 0⋅88 vs
0⋅81, specificity 0⋅75 vs 0⋅68, p < 0⋅05). Interpretability methods highlighted the attention of model to the features of
hemorrhage edge appearance.

Interpretation The present model demonstrated high-performing and robust results on discrimination between
CVST-ICH and spontaneous ICH, and aided doctors’ diagnosis in clinical practice as well. Prospective validation
with larger-sample size is required.

Funding The work was funded by the National Key R&D Program of China (2023YFE0118900), National Natural
Science Foundation of China (No.81971155 and No.81471168), the Science and Technology Department of Zhejiang
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Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University.
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license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study
Delayed diagnosis and misdiagnosis of cerebral venous sinus
thrombosis-related intracerebral hemorrhage (CVST-ICH) are
common, because venography is not routinely used as the
initial imaging modality for ICH patients in emergency
settings. A systematic literature search was conducted in
PubMed using the query (“Cerebral Venous Thrombosis”
[Mesh] OR “CVST” OR “venous infarction” OR “venous
thrombosis”) AND (“Intracerebral Hemorrhage” [Mesh] OR
“ICH” OR “brain hemorrhage”) AND (“Deep Learning” OR
“Artificial Intelligence” OR “Machine Learning”), identifying
studies that applied deep learning for ICH classification.
However, no prior studies have specifically developed an AI-
based model to differentiate CVST-ICH from sICH using either
non-contrast CT (NCCT) or magnetic resonance image.

Added value of this study
This multi-center study developed and validated an
explainable deep learning model for differentiating CVST-ICH

from spontaneous ICH using only non-contrast CT. The model
achieved high diagnostic performance on independent testing
and external validation sets, significantly outperforming the
accuracy of unaided doctors. Furthermore, interpretability
techniques such as Grad-CAM++, SHAP, and IG provided visual
insights into the model’s attention, particularly regarding
hematoma margins and shape features.

Implications of all the available evidence
Although guidelines emphasize the importance of early
identification of intracerebral hemorrhage caused by CVST,
there is still a considerable risk of misdiagnosis and delayed
diagnosis. The proposed deep learning model that relies solely
on non-contrast CT scans has the potential to assist doctors
identifying CVST-ICH from spontaneous ICH, enabling timely
further confirmation and reducing misdiagnosis. However,
further validation, especially larger-scale prospective trials, is
necessary before its application into routine clinical practice.
Introduction
Intracerebral hemorrhage (ICH) is a common and life-
threatening condition in emergency departments.1

Unlike other etiologies such as aneurysm rupture,
arteriovenous malformation and trauma, intracerebral
hemorrhage secondary to cerebral venous sinus
thrombosis is relatively rare and hard to recognize yet
requires high caution to identify.2 Previous studies have
reported cases where misdiagnosis of CVST-ICH led to
mismanagement and adverse outcomes, such as pro-
gression of thrombosis and edema, and decreased con-
sciousness.3 Confirmative venography imaging, such as
computed tomography venography (CTV) or contrast-
enhanced magnetic resonance venography (CE-MRV),
is not only challenging doctors’ capacity, but also time-
consuming. Median diagnostic delays for CVST have
been reported to be about seven days.4 Guidelines also
highlight CVST presenting as hemorrhage as a major
risk of misdiagnosis or delay in diagnosis. Recognizing
these patients is crucial, as the hemorrhagic mecha-
nisms in CVST-ICH differ from other ICH types,
directly impacting treatment approaches.2

The spontaneous intracerebral hemorrhage with a
mortality rate exceeding 30% in the first month, typically
results from small vessel disease caused by hypertensive
arteriopathy and cerebral amyloid angiopathy.5 Early
blood pressure control and minimally-invasive surgical
hematoma clearance are currently recommended to
achieve hemostasis. In contrast, CVST-ICH is attributed
to thrombosis and congestion in cerebral venous
www.thelancet.com Vol 81 March, 2025
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system. Therefore, anticoagulation is required immedi-
ately while hemostatic therapy can be fatal.6

Nearly half of CVST patients experience intracerebral
hemorrhage,7 indicating severe venous congestion,
resulting in a mortality of approximately 40% within the
first month, even under intensive care.8 Therefore, a
quick identification between the two hemorrhagic dis-
orders is urgently needed in clinical settings.

Non-contrast computed tomography is always the
initial imaging modality as patients with intracerebral
hemorrhage presenting in emergency room.1 If sec-
ondary hemorrhage is suspected, subsequent standard
care procedures involve the selection of further CT
angiography (CTA)/CTV, MR angiography (MRA)/
MRV, or digital subtraction angiography (DSA), based
on initial CT and clinical information, with prioritiza-
tion until a diagnosis is made.9 For CVST-ICH, while
non-contrast CT is essential for initial assessment, its
sensitivity for CVST is only 0⋅48–0⋅73, with a specificity
of 0⋅50–0⋅98.10,11 CE-MRV offers improved sensitivity
(0⋅83) and specificity (0⋅99) but is only applied if
necessary and usually inaccessible in urgent settings.12

Improving CT’s ability to detect CVST is crucial for
guiding further diagnostic steps such as CTV or CE-
MRV.

Recently, deep learning models have been employed
in medical emergency scenarios successfully. Previous
studies employed CT scans to develop deep learning
models for discriminating common etiologies of cranial
hemorrhage and generated expert-level results, but
CVST-ICH was omitted from the result categories.13,14 In
this context, the current AI models have not addressed
the clinically urgent demand to discriminate different
etiologic categories requiring completely contrary ther-
apies. Additionally, in real-world settings, inexperienced
doctors and chaos in the emergency department can
lead to a higher misdiagnosis risk compared with other
routine scenarios.

Therefore, to meet the highly clinical-related de-
mand, we aim to develop a rapid and accurate explain-
able deep learning model to automatically discriminate
CVST-ICH from spontaneous intracerebral hemor-
rhage. What’s more, its performance will be assessed
and compared with that of doctors. Then four visual-
izable interpreting methods are used to improve un-
derstandability of the algorithm’s judgment, and the
doctors’ diagnostic accuracy will be tested again with
model’s assistance.
Methods
Data source
We retrospectively collected initial non-contrast CT im-
ages of CVST-ICH patients on arrival to the emergency
department in Second Affiliated Hospital of Zhejiang
University between January 2016 and March 2023. Di-
agnoses were made by radiological reports from the
www.thelancet.com Vol 81 March, 2025
further confirmative imaging modalities, including
CTV, CE-MRV, or DSA, and re-checked by two experi-
enced neurologists (Yang K.C. and Tong L.S.). Since
CVST-ICH mostly presented intracerebral hemorrhage
located in brain lobes,15 we selected spontaneous intra-
cerebral hemorrhage patients who also presented with
lobar hemorrhage and were admitted during the corre-
sponding period as the identification target. For sICH
group, all patients had at least one vascular imaging
during hospitalization, including CT/MR angiography,
CT/MR venogram, or DSA. We systematically re-
evaluated imaging and clinical data as follows: (1) For
patients with available MRV, CTV, or DSA, CVST was
excluded based on these tests. (2) For patients without
MRV, CTV, or DSA, CVST was excluded by reviewing
CTA venous phase, MRA, and clinical features (e.g.,
continuous headache, pregnancy or puerperium, or
high D-dimer levels). (3) For patients with clinical fea-
tures highly suggestive of CVST but with vascular im-
aging showing no significant abnormalities, follow-up
was conducted to review subsequent imaging and clin-
ical records to confirm the exclusion of venous origin
ICH. Only patients who had supratentorial hemorrhage
were analyzed.

Additionally, to evaluate the model’s robustness, we
compiled an external dataset of CVST-ICH and sponta-
neous intracerebral hemorrhage patients from January
2016 to March 2023 from four additional municipal or
county hospitals: Quzhou Second People’s Hospital,
Taizhou First People’s Hospital, Taizhou Hospital, and
Longyan People’s Hospital.

To address potential imaging bias, we applied
propensity score matching (PSM) to balance age dis-
tributions and mitigate class imbalance between
CVST-ICH and sICH groups. Given that CVST-ICH
patients were significantly younger than sICH pa-
tients in both previous studies and our dataset,16

age-related imaging characteristics—such as brain at-
rophy, ventricular enlargement, and parenchymal
low-density changes—could influence model perfor-
mance. Additionally, the original dataset had a notable
class imbalance, with 102 CVST-ICH cases compared
to 683 sICH cases. PSM helped minimize the influ-
ence of class imbalance on model training.17 Using the
MatchIt package in R (version 4.3.4), we applied a 1:3
nearest-neighbor matching without replacement,
without setting a caliper, and estimated propensity
scores via logistic regression, with age as the only
matching variable. Matching was restricted to the in-
ternal dataset. The matched data was then randomly
split into a training set (75%) and an internal testing
set (25%) used for model development and internal
testing, respectively. The external dataset remained
unmatched to preserve its original distribution for
evaluating the model’s generalizability. Details are
provided in the Figure S1. The main process of the
study was shown in Fig. 1.
3
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Fig. 1: Distinct pathogenic mechanisms of intracerebral hemorrhage and the main process of the study.
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Ethics
The study conforms to the principles outlined in the
Helsinki Declaration. Ethical approval was obtained by
the Human Ethics Committee of the Second Affiliated
Hospital of Zhejiang University (2023LSYD0437), the
Medical Ethics Committees of the First People’s Hos-
pital of Taizhou (2023-KY089-01), the First Hospital of
Longyan (LYREC2023-k099-01), Taizhou Hospital
(K20231227), and the Second People’s Hospital of
Quzhou (2023-ER-61). Informed consent was exempted
due to the retrospective nature.

Non-contrast CT image acquisition, segmentation
and labeling
Non-contrast CT images in Digital Imaging and Com-
munications in Medicine (DICOM) format were
extracted from Picture Archiving and Communication
System (PACS) and converted into Neuroimaging
www.thelancet.com Vol 81 March, 2025
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Informatics Technology Initiative (NIfTI) format using
the open-source Python package SimpleITK (version
2.1.1) for further analysis. The number of slices varied
from 24 to 36, with slice thickness ranging from 4⋅0 to
6⋅0 mm. Detailed image parameters are described in
Table S1.

Two neurologists, one with 6 years of experience
(Yang K.C.) and one with 20 years of experience (Tong
L.S.) manually segmented and adjusted the details of the
hematoma area on the CT images using ITK-SNAP
software (version 3.8.0). These manual segmentations
were used as the ground truth for developing model.
CVST and spontaneous intracerebral hemorrhage were
labeled as “1” and “0”, respectively.

Image preprocessing
To enhance model performance and efficiency, all CT
images were preprocessed. The images were resampled
using bilinear interpolation and masked segmentally to
a consistent voxel spacing of 1 mm, resulting in a matrix
size of 140 × 250 × 250. Resampling to isotropic reso-
lution of 1 mm aids the 3D CNN model in accurately
understanding spatial information, harmonizing data
from different sites.18 A window of 0–200 Hounsfield
Units (HU) was selected. Relevant studies demonstrate
that CT images within the 0–200 window contain
abundant brain information, aiding in the detection of
potential subarachnoid and subdural hemorrhages, and
enhancing the model generalization.14,19 Data augmenta-
tion techniques such as rotation, shift, and flip, were
employed to expand training data and mitigate model
overfitting. Differences in data across various sites and
scanners arise from variations in in-plane resolution,
slice thickness, and brain position. Consistency in reso-
lution was ensured through resampling. Image matrices
of consistent size, centered on the brain, were obtained to
ensure accurate brain localization. These steps ensure the
consistency of data across different sites.

Architecture of the deep learning model
The foundational model was an improved version of the
three-dimensional U-Net architecture (3D U-Net) with
the Parametric Rectified Linear Unit (PReLU), which
served as the activation function to augment feature
learning.20 Each convolutional block comprised two
convolutional layers with kernel size of 3 × 3 × 3. The
dilation convolution with stride of two was used as the
second convolutional layer. The concatenation was used
instead of residual connections in each convolutional
block to increase model parameter count. The encoder
integrated the max-pool layer for down-sampling,
whereas the decoder employed 3D transposed convolu-
tion to restore resolution. Dropout was applied at the
bottleneck of the encoding-decoding structure to miti-
gate model overfitting. The depth of the model was four,
with the initial number of convolutional kernels of 32.
www.thelancet.com Vol 81 March, 2025
The complete model consists two networks: hema-
toma segmentation and hemorrhagic cause classifica-
tion. The classification network was further trained
based on the pre-trained part of hematoma segmenta-
tion network, regarding enhancement of the capability
of encoder’s feature extraction by segmentation proxy
task. Specifically, based on the preprocessed non-
contrast CT images, hematoma segmentation network
was trained with the manually segmented hematoma
mask as the ground truth. Then, the encoder part of the
segmentation network was extracted as pre-trained
weights for the classification network, and a fully con-
nected layer was added with the sigmoid function as the
activation for binary classification. The Convolutional
Block Attention Module (CBAM) was incorporated into
the segmentation and classification network, in order to
further guide the model’s attention to hemorrhage re-
gions.21 The CBAM is composed of the Spatial Attention
Module (SAM) and Channel Attention Module (CAM).
In CAM, global average pool and global maximum pool
were used to aggregate spatial information, and the
resultant feature maps undergo computation in a shared
MLP, where the channel weights are obtained using the
softmax function. SAM receives the input from CAM,
computing global maximum and global average in the
channel dimension to yield the single-layer feature map.
The outputs from both channels are merged and fed
into a convolutional layer with a 7 × 7 × 7 kernel. Finally,
the sigmoid function is applied to determine the weight
of each pixel. The CBAM module is introduced after the
second convolutional layer in each convolutional block.
Pre-processed non-contrast CT images and corre-
sponding hematoma masks were used as dual-channel
inputs to train the classification network. Fig. 2 shows
the model structure.

Interpretability of the model
Despite the high accuracy of deep learning models in
diagnosing and predicting diseases, they often fail to
offer comprehensible explanations and undermine the
clinicians’ trust.22 To address this, we employed four
widely-used visualization methods to highlight the re-
gions significantly influencing the model’s outputs.
Grad-CAM++ was used to generate heatmaps that
portray areas where the model concentrated.23 It is an
improved version of Grad-CAM that backpropagates
only through the positive gradients of the predicted
class,24 thereby accentuating pixels positively associated
with the class.

Another gradient-based attribution method called
Integrated Gradients (IG) was also used, which over-
comes gradient saturation by adhering to the axioms of
sensitivity and implementation invariance.25 Using a
black image as the baseline, a gradient linear path from
the baseline image to input image was created. The
gradient integral of classification results related to input
5
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Fig. 2: The framework and process of the proposed method. (a) The hematoma segmentation task based on 3D U-Net. (b) The classification
model. An encoder structure derived from the segmentation model is utilized, and pre-training weights from the segmentation task are loaded
to improve the classification model’s feature extraction capability. The image and segmentation mask form a dual channel as input. (c) The
interpretability researches. The Grad-CAM++, SHAP, Integrated gradient, and Occlusion were employed to elucidate variations in the attention
levels of classification models across different regions. Weighted attention maps were computed from the CBAM module of the third and fourth
convolutional blocks. CVST-ICH, hemorrhage secondary to cerebral venous sinus thrombosis; sICH, spontaneous intracerebral hemorrhage;
UNet3D, 3-dimensional U-Net; CBAM, convolutional block attention module; SHAP, shapley additive exPlanations; Grad-CAM, gradient-
weighted class activation mapping; FC layer, fully connected layer; Conv, convolution; LN, layernorm; PReLU, parametric rectified linear unit; and
Deconv, deconvolution.
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image pixels was calculated, and each pixel’s contribu-
tion was quantified.

Shapley Additive exPlanations (SHAP), grounded in
coalitional game theory,26 was used to further visualize
the model’s interested areas across different outcomes.
This involves calculating the Shapley value for each pixel
based on its marginal contribution to the classification.
An interpretive map was then produced, where pixels
were color-coded according to their contributions: pos-
itive contributions in red and negative contributions in
blue.

Another perturbation-based attribution method,
called occlusion method, was implemented by sliding an
occlusion slider across different image regions to assess
their influence on the model’s classification decisions.

These interpretability maps were overlaid onto the
original non-contrast CT images to assist the diagnosis
of clinicians and enhance intuitive understanding of
model’s decision-making process.

Training procedure of the model
The proposed model employed patch-based training.
Segmentation and classification models used the
128 × 128 × 128 patch as input, which completely con-
tained the region of interest (ROI) of hematoma area. In
the inference stage, the segmentation model was used to
www.thelancet.com Vol 81 March, 2025
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segment hematoma areas from the complete NCCT
image (with a resolution of isotropic 1 mm). The ROI
region was obtained by bounding, using the segmented
hematoma region as the ROI boundary. Then, the
128 × 128 × 128 patch matrix was taken from the
complete non-contrast CT image and additionally
segmented with mask around the ROI region. Finally,
the patch image and mask were input into the classifi-
cation model to generate the results. Since the accuracy
of hematoma segmentation can largely impact classifi-
cation performance, the pre-trained segmentation
model underwent an additional 30 epochs of training on
the complete CT image to obtain the segmentation
model for inference. To evaluate the potential impact of
resampling resolution on model performance, we con-
ducted additional experiments by resampling the Z-axis
resolution to 5 mm while maintaining the in-plane
resolution at 1 mm. This resulted in an adjusted ma-
trix size of [32, 256, 256] for the model input, with a
cropped region of interest at [32, 128, 128]. The input
patch size for the 3D CNN was [32, 128, 128]. The same
model architecture and training pipeline were used for
both settings.

In the experiment, segmentation and classification
models were trained using the training set (306 cases),
as shown in Table 1. The entire training dataset was
randomly divided into five groups (61 cases per group)
for training (four groups) and validation (one group)
using the five-fold cross-validation method, which was
used to optimize hyperparameters, including the input
ratio of positive and negative samples, learning rate,
choice of optimizer, and choice of loss function. The
model was then retrained from scratch using the entire
training set and tested on both internal and external test
sets, consisting of 102 and 157 samples, respectively. In
the final model training, the learning rate was set to
Internal dataset

CVST-ICH sICH T

Cases 102 306 3

Male sex, n [%] 54 [52⋅9%] 203 [66⋅3%] 1

Age, years, median [IQR] 44 [29–61] 50 [40–62] 4

Number of axial slices, n 2978 9075 9

Slice thickness, mm, mean [SD] 5⋅01 [0⋅44] 5⋅02 [0⋅22] 5

Slices per case, mean [SD] 29⋅2 [3⋅48] 29⋅7 [2⋅69] 2

Time onset to imaging, days, median [IQR] 2 [1–4] 1 [1–2] 1

CT scanners GE Optima CT540
SIEMENS SOMATOM Definition
SIEMENS SOMATOM Force
SIEMENS SOMATOM Perspective

IQR, interquartile range; SD, standard deviation; CVST-ICH, hemorrhage secondary to c

Table 1: Dataset characteristics.

www.thelancet.com Vol 81 March, 2025
1e-4, the dropout ratio of 0⋅5, and AdamW was chosen
as the optimizer. The segmentation model used DICE-
CE as loss function, while binary cross-entropy loss
was applied to the classification model.27 The models
were implemented using the PyTorch 1.8.1 framework
and trained on dual RTX3090 GPUs, with a batch size of
two for segmentation tasks and eight for classification
tasks. Segmentation models are trained for 100 epochs,
while classification models are trained for 60 epochs.

Evaluation of the model
The characteristics of segmentation and classification
were both evaluated.

The Dice coefficient was calculated against the
manual segmentation mask on internal dataset.

The classification performance was tested both in
internal and external datasets using area under the
curve, accuracy, sensitivity, specificity, positive predic-
tive value (PPV), negative predictive value (NPV), F1
score, and Matthews Correlation Coefficient (MCC).
The receiver operating characteristic (ROC) curve was
obtained by plotting the true positive rate and the false
positive rate at each discrimination threshold. The area
under the ROC curve and its 95% confidence interval
(CI) were computed. Two operational points on the ROC
curve were selected for detailed evaluation: one for high
sensitivity (specificity > 0⋅8) and another for high spec-
ificity (sensitivity > 0⋅8), and then accuracy, sensitivity,
specificity, PPV, NPV, and F1 scores were calculated,
respectively. The high sensitivity point was selected as
the formal threshold for application, and it was
employed to represent the target performance of the
model. Tests at high specificity points more compre-
hensively reflected the model’s performance range,
particularly with small test sets. Under the threshold of
high specificity, the model’s performance was tested for
External dataset

raining set Testing set All CVST-ICH sICH All

06 (76 CVST-ICH) 102 (26 CVST-ICH) 408 38 119 157

99 [65⋅0%] 58 [56⋅9%] 257 [62⋅9%] 19 [50⋅0%] 76 [63⋅8%] 95 [60⋅5%]
9 [36–57] 53 [39–66] 50 [37–62] 46 [33–59] 65 [54–74] 60 [49–72]

001 3052 12,053 964 3371 4335

⋅04 [0⋅20] 5.00 [0⋅25] 5⋅02 [0⋅29] 5⋅78 [1⋅46] 5⋅27 [0⋅73] 5⋅39 [0⋅99]
9⋅4 [2⋅32] 29⋅9 [2⋅78] 29⋅5 [2⋅91] 25⋅4 [5⋅73] 28⋅3 [4⋅55] 27⋅6 [5⋅02]
[1–3] 1 [1–3] 1 [1–3] 1 [1–5] 1 [1–2] 1 [1–3]

Flash
GE LightSpeed16
GE Discovery CT750 HD
GE BrightSpeed
SIEMENS SOMATOM Definition Edge
SIEMENS SOMATOM Definition AS+
SIEMENS SOMATOM Definition Flash
PHILIPS Brilliance 16CT
CANON AquilionLighning TSX-035A

erebral venous sinus thrombosis; sICH, spontaneous intracerebral hemorrhage.
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interference from specific data, revealing its lower per-
formance limits. Additionally, the MCC values at the
two operating points were assessed for the compre-
hensive evaluation of the classification model. The MCC
is a correlation coefficient particularly adept for
analyzing imbalanced classes, offering a comprehensive
measure of classification effectiveness by accounting for
all aspects of the confusion matrix.28 The MCC value
spans from −1 to +1, with +1 denoting perfect prediction
accuracy, 0 signifying no better than random chance,
and −1 reflecting total discordance between predictions
and actual observations.

Reading test
Two neurologists (Lin Q. with 10 years, and Zhang Y.H.
with two years of experience, respectively), two radiolo-
gists (Wang Q.Y. and Guan X.J. both with ten years of
experience), and five emergency doctors (Lin R.X. with
two years, Wang J.L. with three years, Cai Y.Y. with
three years, Wang D.Q. with two years and Wu D.Q.
with twelve years of experience, respectively) conducted
the reading of non-contrast CT scans to classify CVST-
ICH without the model assistance. Judgments were
made based on their professional imaging expertise,
including signs such as cord sign, high-density delta
sign, or multiple flame-shaped hemorrhages indicative
of CVST-ICH. Subsequently, the probability values
derived from the high-sensitivity point and interpretable
maps were provided as assistance to re-read the CT
images. Cases were arranged in a random order, with all
clinical information, radiology reports, and other imag-
ing data concealed. Both the readers and the recorders
were blinded to the classifications. The reading assess-
ment was performed on the entire internal testing set.

Statistics
Continuous variables that adhered to a normal distri-
bution were reported as mean ± standard deviation
(SD), while non-normally distributed data were pre-
sented as median and interquartile range (IQR). Cate-
gorical variables were summarized as percentages. The
robustness of the metrics was evaluated using the
bootstrapping method, using 1000 iterations with
random sampling, and credit interval as defined as be-
tween 2⋅5th and 97⋅5th percentiles. During the reading
test, readers and recorders were blinded to the ground
truth. The average accuracy, sensitivity, and specificity
of doctors, both with and without the assistance of the
proposed model were calculated using Linear Mixed
Model, as well as the mean differences.29,30 The mixed
model included an indicator for model vs doctor, and for
assistance vs no-assistance, as fixed effects, with image
serial number as random effect. The coefficient for the
fixed effect could be interpreted as the difference in
accuracy, sensitivity, or specificity between the model
and the doctor or between with and without assistance.
Corrected t-tests were used for fixed effect estimates
based on the Satterthwaite approximation for denomi-
nator degrees of freedom. Two-tailed p < 0⋅05 was
defined as statistically significant. Statistical analysis was
performed using the lmerTest (version 3.1–3) and
emmeans (version 1.10.0) packages within R software.

Role of the funding source
The funders of our study had no role in study design,
data collection, data analysis, data interpretation, or
writing of the report. There was no commercial support.
Results
Datasets
Initial imaging and further clinical materials were
collected in 102 patients with CVST-ICH (Age, 44 [29,
61] years) and 683 patients having spontaneous lobar
intracerebral hemorrhage (Age, 65 [52, 73] years).
Following propensity score matching, 102 patients in
CVST-ICH and 306 patients in spontaneous lobar
intracerebral hemorrhage (Age, 50 [40, 62] years) were
selected to form the internal dataset.

The external dataset comprised 157 cases (Age, 60
[49, 72] years), including 38 patients with CVST-ICH
(Age, 46 [33, 59] years) and 119 patients with sponta-
neous lobar intracerebral hemorrhage (Age, 65 [54, 74]
years). The inclusion/exclusion flowchart of internal
dataset is shown in Fig. 3, and patient demographics are
presented in Table 1 and Table S2.

Model performance
Segmentation
The Dice coefficient of the segmentation network for
hematoma segmentation was 0⋅84 ± 0⋅13 (95% CI [0⋅81,
0⋅87]) in the internal testing set.

Classification
Table 2 and Fig. 4 summarize the classification perfor-
mance of the model.

On the internal testing set, the classification network
achieved an AUC of 0⋅94 (95% CI [0⋅87, 0⋅98]) for
hemorrhagic origin classification. At the high sensitivity
operation point, the network achieved accuracy of 0.84
(95% CI [0⋅77, 0⋅91]), with sensitivity and specificity of
0⋅96 (95% CI [0⋅88, 1⋅00]) and 0⋅80 (95% CI [0⋅71, 0⋅89]),
respectively. The corresponding F1 score and MCC
value were 0⋅76 (95% CI [0⋅67, 0⋅85]) and 0⋅68 (95% CI
[0⋅56, 0⋅81). As to the high specificity point, the network
exhibited a classification accuracy of 0⋅90 (95% CI [0⋅83,
0⋅95]), with specificity of 0⋅93 (95% CI [0⋅87, 0⋅99]) and
sensitivity of 0⋅81 (95% CI [0⋅65, 0⋅96]). The F1 score
was 0⋅81 (95% CI [0⋅68, 0⋅91) and the MCC value was
0⋅74 (95% CI [0⋅59, 0⋅87]).

On the external dataset, the AUC of the classification
network was 0⋅85 (95% CI [0⋅76, 0⋅92]). The accuracy,
sensitivity, specificity, F1 score, and MCC of the model
at the high sensitivity point were 0⋅83 (95% CI [0⋅77,
www.thelancet.com Vol 81 March, 2025
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Fig. 3: Flow chart for patient extracting and matching for internal dataset.
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0⋅89]), 0⋅87 (95% CI [0⋅76, 0⋅97]), 0⋅82 (95% CI
[0⋅76,0⋅89]), 0⋅72 (95% CI [0⋅63, 0⋅80]), and 0⋅62 (95% CI
[0⋅50, 0⋅74]), respectively. At the high specificity opera-
tion point, the model accomplished 0⋅82 (95% CI [0⋅76,
0⋅88]) as accuracy, with sensitivity and specificity values
of 0⋅82 (95% CI [0⋅68, 0⋅92]) and 0⋅82 (95% CI [0⋅76,
0⋅89]), resulting in an F1 score and MCC value of 0⋅69
(95% CI [0⋅59, 0⋅78]) and 0⋅58 (95% CI [0⋅45, 0⋅71]).

To demonstrate the stability of the classification al-
gorithm, we summarized the cross-validation results in
Table 2. The ROC curves for the five-fold cross-valida-
tion are shown in Figure S3, showing a mean AUC of
0⋅93 (95% CI [0⋅89, 0⋅97]). The mean sensitivity, speci-
ficity, MCC, and F1 score of the model were 0⋅86 (95%
CI [0⋅82, 0⋅90]), 0⋅86 (95% CI [0⋅81, 0⋅90]), 0⋅75 (95% CI
[0⋅70, 0⋅80]), and 0⋅66 (95% CI [0⋅59, 0⋅74]) at high
sensitivity point, and 0⋅80 (95% CI [0⋅80, 0⋅80]), 0⋅92
(95% CI [0⋅86, 0⋅98]), 0⋅72 (95% CI [0⋅64, 0⋅81]), and
0⋅79 (95% CI [0⋅73, 0⋅85]) at high specificity point,
respectively.

Reading performance
Table 3 and Table S4 summarized the diagnostic per-
formance of doctors’ manual reading. Before being
aided by the current model, the mean accuracy,
www.thelancet.com Vol 81 March, 2025
sensitivity, and specificity of doctors were 0⋅71 (95% CI
[0⋅67, 0⋅75]), 0⋅81 (95% CI [0⋅73, 0⋅89]), and 0⋅68 (95%
CI [0⋅62, 0⋅73]), respectively. Compared with the model
performance alone, the absolute differences in accuracy,
sensitivity, and specificity were 0⋅13 (95% CI [0⋅05,
0⋅22], p < 0⋅05), 0⋅15 (95% CI [0⋅01, 0⋅29], p < 0⋅05), and
0⋅13 (95% CI [0⋅03, 0⋅23], p < 0⋅05).

With the model assistance, the doctors notably
improved average accuracy from 0⋅71 to 0⋅79 (95% CI
[0⋅74, 0⋅83]), with an absolute difference of 0⋅08 (95% CI
[0⋅04, 0⋅11], p < 0⋅05), the sensitivity was also elevated
from 0⋅81 to 0⋅87 (95% CI [0⋅80, 0⋅95]), with an absolute
difference of 0⋅06 (95% CI [0⋅01, 0⋅12], p < 0⋅05), and the
specificity was increased from 0⋅68 to 0⋅75 (95% CI
[0⋅70, 0⋅81]), with a difference of 0⋅08 (95% CI [0⋅04,
0⋅12], p < 0⋅05).

Model interpretability
The interpretability maps generated by four visualiza-
tion methods are presented in Fig. 5. The Grad-CAM++
heatmaps highlighted the model’s attention on hema-
toma’s borderline and perihematomal low-density areas,
with the latter being particularly emphasized in CVST-
ICH patients (Fig. 5a–d). In SHAP and IG maps,
pixels with positive gradients were coded red, and those
9
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5-fold cross validationa Internal testing data External testing data

CVST-ICH sICH CVST-ICH sICH CVST-ICH sICH

Cases – – 26 76 38 119

AUC [95% CI] 0⋅9342 [0⋅8949, 0⋅9736] 0⋅9352 [0⋅8674, 0⋅9818] 0⋅8476 [0⋅7629, 0⋅9228]
High sensitivity operating point

Predicted CVST-ICH – – 25 15 33 21

Accuracy [95% CI] 0⋅8567 [0⋅8213, 0⋅8920] 0⋅8431 [0⋅7745, 0⋅9118] 0⋅8344 [0⋅7707, 0⋅8917]
Sensitivity [95% CI] 0⋅8533 [0⋅8096, 0⋅8971] 0⋅9615 [0⋅8846, 1⋅0000] 0⋅8684 [0⋅7632, 0⋅9737]
Specificity [95% CI] 0⋅8578 [0⋅8158, 0⋅8997] 0⋅8026 [0⋅7105, 0⋅8947] 0⋅8235 [0⋅7563, 0⋅8908]
PPV [95% CI] 0⋅6748 [0⋅6012, 0⋅7484] 0⋅6250 [0⋅5319, 0⋅7429] 0⋅6111 [0⋅5179, 0⋅7200]
NPV [95% CI] 0⋅9461 [0⋅9296, 0⋅9626] 0⋅9839 [0⋅9500, 1⋅0000] 0⋅9515 [0⋅9118, 0⋅9896]
F1 Score [95% CI] 0⋅7512 [0⋅6983, 0⋅8041] 0⋅7576 [0⋅6761, 0⋅8525] 0⋅7174 [0⋅6279, 0⋅8046]
MCC [95% CI] 0⋅6641 [0⋅5905, 0⋅7378] 0⋅6821 [0⋅5633, 0⋅8093] 0⋅6239 [0⋅4971, 0⋅7427]

High specificity operating point

Predicted CVST-ICH – – 21 5 31 21

Accuracy [95% CI] 0⋅8900 [0⋅8481, 0⋅9319] 0⋅9020 [0⋅8333, 0⋅9510] 0⋅8217 [0⋅7580, 0⋅8790]
Sensitivity [95% CI] 0⋅8000 [0⋅8000, 0⋅8000] 0⋅8077 [0⋅6538, 0⋅9615] 0⋅8158 [0⋅6842, 0⋅9211]
Specificity [95% CI] 0⋅9200 [0⋅8641, 0⋅9759] 0⋅9342 [0⋅8684, 0⋅9868] 0⋅8235 [0⋅7563, 0⋅8908]
PPV [95% CI] 0⋅7917 [0⋅6836, 0⋅8999] 0⋅8077 [0⋅6667, 0⋅9524] 0⋅5962 [0⋅5000, 0⋅7083]
NPV [95% CI] 0⋅9321 [0⋅9280, 0⋅9363] 0⋅9342 [0⋅8846, 0⋅9857] 0⋅9333 [0⋅8909, 0⋅9709]
F1 Score [95% CI] 0⋅7906 [0⋅7315, 0⋅8498] 0⋅8077 [0⋅6818, 0⋅9057] 0⋅6889 [0⋅5934, 0⋅7805]
MCC [95% CI] 0⋅7211 [0⋅6366, 0⋅8056] 0⋅7419 [0⋅5870, 0⋅8728] 0⋅5818 [0⋅4457, 0⋅7089]

AUC, area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value; MCC, Matthews correlation coefficient; CI,
confidence interval; CVST-ICH, intracerebral hemorrhage secondary to cerebral venous sinus thrombosis; sICH, spontaneous intracerebral hemorrhage. aThe mean and
confidence interval of cross-validation were computed based on five outcomes of the optimal hyperparameter model. The normal approximation method is used to
calculate 95% CI of cross-validation.

Table 2: The performance of the classification model on the internal and external testing datasets.
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areas increased the probability of CVST-ICH were
mainly distributed around the hemorrhage. Conversely,
blue pixels, which enhanced the tendency of sICH, were
concentrated within the hemorrhage. Masking the he-
matoma, particularly its margins, significantly impacted
the classification results, as demonstrated by the occlu-
sion technique.

Model performance with 5 mm Z-axis resampling
resolution
Segmentation
The DICE of the segmentation model with 5 mm Z-axis
resampling resolution was 0⋅82 (0⋅79, 0⋅85) in the in-
ternal testing set, which is similar to the performance at
1 mm resolution, 0⋅84 (0⋅81, 0⋅87).

Classification
Similarly, classification performance at 5 mm Z-axis
resolution showed slightly lower accuracy compared to
the 1 mm setting, as shown in Table 4. On the internal
testing set, the classification model under 5 mm Z-axis
resampling resolution achieved an AUC of 0⋅91 (95% CI
[0⋅85, 0⋅97]). At the high sensitivity operating point, the
model demonstrated an accuracy of 0⋅81 (95% CI [0⋅72,
0⋅89]), with a sensitivity of 0⋅85 (95% CI [0⋅69, 0⋅96]) and
a specificity of 0⋅80 (95% CI [0⋅71, 0⋅89]). At the high
specificity operating point, the accuracy increased to
0⋅89 (95% CI [0⋅83, 0⋅96]), with a specificity of 0⋅92 (95%
CI [0⋅85, 0⋅97]) and a sensitivity of 0⋅81 (95% CI [0⋅65,
0⋅96]). On the external set, the model achieved an AUC
of 0⋅83 (95% CI [0⋅77, 0⋅89]). At the high sensitivity
operating point, the accuracy was 0⋅81 (95% CI [0⋅68,
0⋅92]), with a sensitivity of 0⋅82 (95% CI [0⋅68, 0⋅92]) and
a specificity of 0⋅81 (95% CI [0⋅73, 0⋅88]). At the high
specificity operating point, the model maintained an
accuracy of 0⋅81 (95% CI [0⋅75, 0⋅87]), with a specificity
of 0⋅81 (95% CI [0⋅74, 0⋅87]) and a sensitivity of 0⋅82
(95% CI [0⋅68, 0⋅95]). These findings suggest that
resampling to 1 mm resolution does not degrade model
performance.
Discussion
In the present model, we found that an enhanced 3D U-
Net with segmentation and classification through
transfer learning provides an accurate and stable
approach to identify cerebral hemorrhagic lesions due to
cerebral venous sinus thrombosis from other sponta-
neous intracerebral hemorrhage. To our knowledge, this
is the first study to pioneer a deep learning algorithm
using only non-contrast CT in the emergency scenario
to discriminate these two etiologies with totally different
treatment strategies. By guiding the model concen-
trating on the hematoma region through a segmentation
www.thelancet.com Vol 81 March, 2025
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Fig. 4: ROC curves and confusion matrices for classification algorithm on internal and external testing datasets. (a) The AUC of the
classification algorithm was 0⋅94 (95% CI 0⋅87–0⋅98) on internal testing set. At the high sensitivity operating point, the algorithm (red asterisk)
outperformed the average performance of doctors (blue asterisk), and doctors’ performance improved after algorithm assistance (purple
asterisk). The confusion matrix at the high sensitivity operating point was marked in blue, while the one at high specificity was in red. (b) The
AUC of the classification algorithm was 0⋅84 (95% CI 0⋅76–0⋅92) on external testing set. The confusion matrices of high sensitivity and high
specificity operating points were shown in blue and red, respectively. CVST-ICH, hemorrhage secondary to cerebral venous sinus thrombosis;
sICH, spontaneous intracerebral hemorrhage; ROC, receiver operating characteristic; AUC, area under the curve.

Average doctor performance [95% CI] Deference [95% CI] p value

Without model assistance (compared with classification model)

Accuracy 0⋅7102 [0⋅6655, 0⋅7550] 0⋅1329 [0⋅0497, 0⋅2161] 0⋅0018
Sensitivity 0⋅8120 [0⋅7346, 0⋅8894] 0⋅1496 [0⋅0097, 0⋅2895] 0⋅037
Specificity 0⋅6754 [0⋅6231, 0⋅7278] 0⋅1272 [0⋅0262, 0⋅2282] 0⋅014

With model assistance (compared with the ones without model assistance)

Accuracy 0⋅7854 [0⋅7392, 0⋅8316] 0⋅0752 [0⋅0399, 0⋅1104] <0⋅0001
Sensitivity 0⋅8761 [0⋅8000, 0⋅9522] 0⋅0641 [0⋅0047, 0⋅1235] 0⋅035
Specificity 0⋅7544 [0⋅6994, 0⋅8093] 0⋅0789 [0⋅0362, 0⋅1217] <0⋅0001

Table 3: The manual performance in identifying with and without the proposed model assistance.

Articles
proxy task, and enhancing this effect with a dual-
channel input and integrated CBAM module, we
trained the model with an AUC exceeding 0⋅90, as well
as high sensitivity and specificity. It maintained robust
performance across an external dataset originated from
other four hospitals having different imaging settings.
Additionally, the model outperforms doctors’ average
performance and significantly improves diagnostic ac-
curacy when used as an assistant, suggesting it could be
a promising imaging aid.

Published machine learning studies have focused
only on CVST. Yang X et al. developed a model using
392 patients’ MR imaging data to diagnosis CVST, with
an AUC of 0⋅96, a sensitivity of 0⋅96 and specificity of
0⋅88 on per-patient diagnosis level among internal test
data, without external validation.31 The model trained by
13 radiomics variables extracted from high-resolution
MRI of 53 patients with CVST had a sensitivity of
0⋅83, a specificity of 0⋅94 and an AUC of 0⋅98 for diag-
nosis.32 However, a novel perspective is that our study
aims to distinguish CVST from other causes among
patients presenting with ICH. As CVST-ICH frequently
www.thelancet.com Vol 81 March, 2025
presents in emergency settings and requires specific
anticoagulant therapy, a highly sensitive detection
method is necessary.2 Traditional indicators like flame-
shaped and small subcortical hemorrhages were found
to have limited diagnostic efficiency.33 Other CT image
signs, such as the high-density delta sign and cord sign
on non-contrast CT images can implicate venous sinus
thrombosis, but only appear in a small proportion of
11
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Fig. 5: Visual representation of the interpretability of the classification network. Four distinct methods are employed to elucidate the
classification criteria. In the Grad-CAM+ + and Occlusion maps, high-weight regions significantly affect the model prediction results. In SHAP
and IG maps, red indicates that the voxel favors the model predicting CVST-ICH, while blue signifies a tendency towards sICH. For correctly
predicted CVST-ICH patients, the Grad-CAM++ heatmap presentation model focuses on the hematoma and surrounding parenchyma (a, b, c,
d). SHAP interpretability maps indicate that red voxels are mainly located along the edge of the hematoma and the surrounding low-density
areas (a, b, c, d). IG interpretability maps demonstrate that red voxels are located at the edge of the hematoma (b, c, d). The occlusion method
shows that regions masked by red blocks in the visual representation significantly impact the model’s classification. For correctly predicted sICH
patients, Grad-CAM++ shows the model focuses on hematoma. SHAP and IG interpretability maps indicate that blue voxels are predominantly
within the hemorrhage (e, f, g, h). CVST-ICH, hemorrhage secondary to cerebral venous sinus thrombosis; ICH, intracerebral hemorrhage; SHAP,
shapley additive exPlanations; Grad-CAM, gradient-weighted class activation mapping.
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CVST patients.34 In this context, Discriminating CVST-
ICH from spontaneous intracerebral hemorrhage, us-
ing initial non-contrast CT at arrival of emergency
department rather than magnetic resonance imaging,
should be the priority in developing an automatic
model. Therefore, we aimed to develop a model with
high sensitivity to meet the diagnostic needs of doctors
for this condition, and minimize the cost of specificity.
On the internal testing set, the proposed model achieved
a sensitivity of 0.96 while maintaining a specificity no
lower than 0.80, which has potential implications for
reducing missed diagnoses of CVST-ICH. Additionally,
the proposed model demonstrated robustness on
external data compiled from four hospitals. It is
reasonable to see minor differences compared to its
performance on internal data, because it may be attrib-
uted to inconsistency in imaging protocols or image
quality in different hierarchy of hospitals. Overall, the
model’s stability and performance on external data
remain satisfactory.

The transfer learning and CBAM were used to guide
the model’s attention towards hemorrhage regions and
enhance its feature extraction capabilities. Leveraging
the outstanding hematoma segmentation capability of
3D U-Net, we employed a segmentation proxy task to
enhance the classification model’s capacity in extracting
structure and edge information of hematoma. The
CBAM module incorporates two distinct attention
mechanisms, channel attention and spatial attention,
allowing the feature map to obtain weights in the
channel domain and spatial domain respectively, adap-
tively refining features, and focusing the model on
learning more important features. In addition, we found
that by introducing the original CT images combined
with hematoma masks as dual-channel inputs in the
classification network, the performance was signifi-
cantly enhanced. This improvement is likely attributed
to the mask serving as a guiding mechanism, reinforc-
ing the model’s focus on hemorrhagic regions, and
intensifying its perception and learning of target areas.

One of the concerns in clinical practice is that stan-
dard head CT scans are typically acquired with a slice
thickness of 5 mm, whereas our model was trained
using isotropic 1 mm resolution. To evaluate the influ-
ence of this discrepancy, we conducted an additional
experiment by resampling the Z-axis to 5 mm. The re-
sults showed that segmentation and classification per-
formance at 5 mm in the slice direction remained
comparable to that with 1 mm setting (Tables 2 and 4),
indicating that 1 mm resampling did not reduce the
model performance. Unlike 2D CNNs, which typically
resample only in-plane resolution, isotropic 3D resam-
pling has been widely used in deep learning-based brain
CT analysis. Several studies have demonstrated its
effectiveness, including Titano et al. and Tran et al., who
resampled head CT images with 5 mm slice thickness to
isotropic 1 mm resolution for training 3D CNNs in
neurological event detection and hematoma expansion
www.thelancet.com Vol 81 March, 2025
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Internal testing data External testing data

CVST-ICH sICH CVST-ICH sICH

Cases 26 76 38 119

AUC [95% CI] 0⋅9135 [0⋅8492, 0⋅9696] 0⋅831 [0⋅7747, 0⋅8925]
High sensitivity operating point

Predicted CVST-ICH 22 15 31 23

Accuracy [95% CI] 0⋅8137 [0⋅7255, 0⋅8922] 0⋅8089 [0⋅7389, 0⋅8790]
Sensitivity [95% CI] 0⋅8462 [0⋅6923, 0⋅9615] 0⋅8158 [0⋅6842, 0⋅9211]
Specificity [95% CI] 0⋅8026 [0⋅7105, 0⋅8947] 0⋅8067 [0⋅7311, 0⋅8824]
PPV [95% CI] 0⋅5946 [0⋅4773, 0⋅7500] 0⋅5741 [0⋅4762, 0⋅6863]
NPV [95% CI] 0⋅9385 [0⋅8857, 0⋅9848] 0⋅9320 [0⋅8857, 0⋅9706]
F1 Score [95% CI] 0⋅6984 [0⋅5882, 0⋅8148] 0⋅6739 [0⋅5778, 0⋅7727]
MCC [95% CI] 0⋅5881 [0⋅4293, 0⋅7496] 0⋅5613 [0⋅4238, 0⋅6990]

High specificity operating point

Predicted CVST-ICH 21 6 31 23

Accuracy [95% CI] 0⋅8922 [0⋅8333, 0⋅9608] 0⋅8089 [0⋅7516, 0⋅8726]
Sensitivity [95% CI] 0⋅8077 [0⋅6538, 0⋅9615] 0⋅8158 [0⋅6842, 0⋅9474]
Specificity [95% CI] 0⋅9211 [0⋅8553, 0⋅9737] 0⋅8067 [0⋅7395, 0⋅8739]
PPV [95% CI] 0⋅7778 [0⋅6552, 0⋅9231] 0⋅5741 [0⋅4902, 0⋅6852]
NPV [95% CI] 0⋅9333 [0⋅8861, 0⋅9865] 0⋅9320 [0⋅8922, 0⋅9780]
F1 Score [95% CI] 0⋅7925 [0⋅6792, 0⋅9231] 0⋅6739 [0⋅5806, 0⋅7674]
MCC [95% CI] 0⋅7199 [0⋅5669, 0⋅8968] 0⋅5613 [0⋅4267, 0⋅6968]

AUC, area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative
predictive value; MCC, Matthews correlation coefficient; CI, confidence interval; CVST-ICH, intracerebral
hemorrhage secondary to cerebral venous sinus thrombosis; sICH, spontaneous intracerebral hemorrhage.

Table 4: The performance of the classification model under 5 mm Z-axis resampling resolutions.
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prediction.18,35 Therefore, isotropic resolution of 1 mm
was used in the proposed model. Regarding the influence
of interpolation on medical image segmentation, our
prior research investigated the effects of MRI physical
resolution and interpolated resolution on segmentation,
demonstrating that interpolated resolution does not
introduce significant biases in segmentation tasks.36

The interpretability analysis by four visualization
methods, suggests that the model identifies features
related to the hematoma margins, shape, and the sur-
rounding edema, potentially reflecting the unique
pathophysiology of CVST-ICH. This condition is often
linked to elevated venous pressure resulting in vascular
rupture and capillary wall necrosis,37 leading to red
blood cell extravasation.38,39 Unlike hypertensive hem-
orrhage, which originates from a single small artery and
typically appears as a solitary, well-defined hematoma on
CT,40 CVST-ICH often involves multifocal subcortical
veins. However, CAA-related hemorrhages can be mis-
diagnosed as CVST-ICH due to their irregular or
multifocal nature.3,41 In addition, CVST-ICH is associ-
ated with significant cytotoxic or vasogenic edema,42,43

characterized by a mismatch in hematoma and edema
volumes. This occurs due to local blood reflux and
impaired blood perfusion, leading to peri-venous edema
and further fluid dynamics disruption in venous si-
nuses.39,44 Beyond the visual patterns revealed by heat-
maps, the proposed models may identify more nuanced
and deeper level imaging characteristics, such as texture
and density gradient distributions, enhancing the
model’s ability to distinguish between these two
conditions.

Our study has several limitations. Firstly, due to the
rarity of CVST-ICH, prospective data is quite chal-
lenging to obtain, thus our study utilized a sufficiently
large retrospective dataset with multi-center validation.
The inherent nature of retrospective data introduces
selection bias and uneven baseline characteristics be-
tween CVST-ICH and other sICH, also, the notable
difference in disease incidence leads to imbalance in
our datasets. To resolve the risk of overfitting and
underfitting due to imbalance, and to deal with the
uneven baseline characters, we applied propensity score
matching, alongside data augmentation and under-
sampling, to minimize the impact of data imbalance, as
well as bias due to retrospective nature. Additionally, we
could not intervene in whether patients followed the
standardized care pathway during their hospitalization,
which is an inherent limitation of retrospective studies.
However, we made efforts to minimize potential biases.
Specifically, all CVST-ICHs were confirmed by venous
imaging or DSA, and the sICH patients underwent
thorough clinical, imaging, and follow-up evaluations.
Secondly, the sample sizes in our training and test
datasets were relatively small, compared with other
diseases, although the CVST-ICH cohort is relatively
large one compared to previous studies, as our
www.thelancet.com Vol 81 March, 2025
knowledge. From two large observational cohorts of
ICH, comprising 1043 patients, only 10 cases (1%) were
identified as CVST-ICH.45 The ISCVT study, a pro-
spective observational study across 21 countries and 89
centers, included 624 CVST cases, with 245 involving
hemorrhage.4 These inherent shortcoming of obtaining
larger datasets is a common limitation in CVST
research, given the low incidence of CVST (with hem-
orrhagic cases accounting for only 30%). Despite con-
cerns about the stability and generalizability due to the
small sample size, our model showed convincing,
consistent, and reliable performance across datasets,
indicating its robustness. A major challenge in multi-
site CT studies is the variability in acquisition pro-
tocols, scanner types, and reconstruction algorithms,
which can introduce bias in models. While harmoni-
zation methods such as ComBat have been widely used
to adjust radiomic features across sites, these methods
are primarily designed for predefined feature-based
analyses.46 In contrast, 3D CNNs learn hierarchical fea-
tures directly from images, making it technically chal-
lenging to apply ComBat to learned intermediate
features. Incomplete harmonization may reduce model
generalizability, leading to inconsistent performance
across different clinical settings, increased misclassifi-
cation, or reduced segmentation accuracy. To evaluate
site-specific variations, the t-SNE was used to visualize
the learned feature distribution from five sites, which
13
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confirmed the highly overlapped features (Figure S4).47

Finally, the non-100% specificity indicates the pres-
ence of false positive cases, thus positioning our model
more as an alarm, prompting doctors to confirm the
diagnosis with venography imaging.

The proposed model is provided as an open-sourced
package at Github: https://github.com/CVST-Research/
CVST-ICH_Classify, facilitating the generalizability
testing across additional sites. Further prospective vali-
dation is necessary to ensure its reliability before it can
be adopted in clinical practice. Future studies could
focus on assessing the model’s impact on diagnostic
accuracy, workflow efficiency, and patient outcomes.
Additionally, developing models that cover a broader
range of hemorrhage types represents a promising di-
rection for future research.

In conclusion, we developed an explainable and fully
automated deep learning model for distinguishing
intracerebral hemorrhage due to CVST from other
spontaneous intracerebral hemorrhages on initial
emergent CT. The model demonstrated promising
generalizability and reproducibility, and the visualiza-
tion tools may assist doctors in urgent recognition.
Importantly, the requirement of only plain CT makes
this model applicable in emergency scenarios. Future
prospective validation in real-world clinical settings is
needed before its integration into clinical practice.
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