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A neural geometry approach 
comprehensively explains apparently 
conflicting models of visual perceptual 
learning
 

Yu-Ang Cheng    1,2, Mehdi Sanayei3,4, Xing Chen5, Ke Jia6,7,8, Sheng Li    9,10,11, 
Fang Fang    9,10,11,12, Takeo Watanabe    2, Alexander Thiele3 & 
Ru-Yuan Zhang    1 

Visual perceptual learning (VPL), defined as long-term improvement 
in a visual task, is considered a crucial tool for elucidating underlying 
visual and brain plasticity. Previous studies have proposed several neural 
models of VPL, including changes in neural tuning or in noise correlations. 
Here, to adjudicate different models, we propose that all neural changes 
at single units can be conceptualized as geometric transformations of 
population response manifolds in a high-dimensional neural space. 
Following this neural geometry approach, we identified neural manifold 
shrinkage due to reduced trial-by-trial population response variability, 
rather than tuning or correlation changes, as the primary mechanism of 
VPL. Furthermore, manifold shrinkage successfully explains VPL effects 
across artificial neural responses in deep neural networks, multivariate 
blood-oxygenation-level-dependent signals in humans and multiunit 
activities in monkeys. These converging results suggest that our neural 
geometry a pp ro ach c om pr eh en sively explains a wide range of empirical 
results and reconciles previously conflicting models of VPL.

Adapting to new visual environments is crucial for an organism’s  
survival in its environment. This ability is well exemplified by visual 
perceptual learning (VPL), which is defined as long-term performance 
enhancements resulting from visual experience1,2. However, despite 
years of research in systems neuroscience, psychophysics and machine 
learning, the mechanisms behind VPL remain mysterious.

It is widely acknowledged that visual training enhances behav-
ioural performance and refines representations in neural populations. 
Previous studies using human neuroimaging and monkey neurophysi-
ology have demonstrated a significant improvement in the fidelity 
of stimulus encoding within population responses3–5. These findings 
strongly support the theory that enhanced signal-to-noise ratios (SNRs) 
serve as a potent computational mechanism for improved neural 

representations associated with VPL (Fig. 1e)6–8. However, improved 
SNR is an algorithm-level model, and the exact underlying neural mech-
anisms to achieve improved SNR remain elusive. Several conflicting 
models have been proposed on the basis of neural changes associated 
with VPL. One model suggests that VPL is associated with changes in 
population representations resulting from changes in neuronal tuning 
curves, as indicated by sharpened orientation tuning curves in monkey 
visual cortex9,10. Another model assumes that changes in population 
representations result from a reduction in trial-by-trial co-variation 
of neuronal firing rate, known as noise correlations, which have been 
observed in association with VPL in both monkeys and songbirds11–14.

The primary conceptual gap in reconciling the conflicting models 
of VPL lies in their focus on mechanisms proposed at the single-unit 
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learning task, blood-oxygenation-level-dependent (BOLD) response 
changes associated with VPL of motion direction learning in humans, 
and the electrophysiological population response changes associated 
with VPL of contrast discrimination in monkey V4.

Results
VPL improves behavioural performance of DCNN
To elucidate the neurocomputational mechanisms of VPL, we trained a 
DCNN (Fig. 1a) to perform a classical orientation discrimination task7. 
DCNN modelling allows us to easily assess the activity of the whole 
population in each layer and along the entire visual hierarchy. Similar 
to the neural network in ref. 19, this neural network inherits the first five 
convolutional layers of AlexNet, which was pretrained on ImageNet20. 
To emulate the decision stage of orientation discrimination, we added 
a linear decoding layer and used the logistic function to classify the 
activity of the decision unit into a binary perceptual choice (that is, 
clockwise or counterclockwise rotation of the target stimulus relative to 
the reference stimulus). Importantly, similar to previous psychophysi-
cal studies7,21, we systematically manipulated the level of input image 
noise (Fig. 1b). The network was trained on stimuli with multiple noise 
and contrast levels (see Methods for training details).

To evaluate the performance of the neural network, we assessed 
orientation discrimination accuracy as a function of stimulus contrast 
and noise (Fig. 1c,d) and further derived contrast thresholds as a func-
tion of image noise level (Fig. 1f, threshold versus noise (TvN) function). 
We found that training improved the network performance in this 
task in almost all stimulus contrast and noise conditions. The uniform 
downshift of TvN functions (Fig. 1f) is consistent with well-established 
human psychophysical results (replotted in Fig. 1e)7,8.

VPL refines neural population representations in DCNN
We next sought to understand the effects of visual training on  
population representations in the network. We performed multivari-
ate decoding analyses in each layer and found that training signifi-
cantly improved decoding accuracy in later layers (Fig. 2f, layers 3–5; 
one-sided paired t-test, all t(3) < −3.59, all P < 0.020; see full statistical 
results in Supplementary Table 1). More formally, we calculated linear 
Fisher information, a classical metric in computational neuroscience, 
to quantify how well the two stimuli can be discriminated on the basis 
of population responses (Methods). The amount of sensory informa-
tion represented in later layers was indeed significantly enhanced by 
training (Fig. 2g, layers 3–5; one-sided paired t-test, all t(3) < −3.47, all 
P < 0.018; see full statistical results in Supplementary Table 2). Such 
refined neural representation at the population level is consistent with 
the decoding results based on both cortical activity in humans3,4,22 and 
multiunit spiking activity in monkeys13,14.

VPL changes response properties of individual units in DCNN
In addition to the population-level changes, we found that three  
key individual-level neural signatures of VPL as documented in the 
neurophysiological literature emerge naturally from the neural net-
work training. First, training modestly sharpened the tuning curves 
of artificial neurons in layers 1–4 (Fig. 2h and Supplementary Fig. 1), a 
finding reported in several previous studies9,10,23. (Fig. 2c, but see also 
null results in ref. 24). Second, we observed a decrease in Fano factor of 
individual units in all five layers (Fig. 2i and Supplementary Fig. 1), a phe-
nomenon indicating an increased SNR of individual neuronal responses 
in both humans25 and monkeys11,23 (Fig. 2d). The sharpened tuning curve 
and reduced Fano factor are also consistent with theoretical model-
ling19. Third, training reduced trial-by-trial noise correlations between 
units in all five layers (Fig. 2j and Supplementary Fig. 1), a finding also 
consistent with several empirical results in monkeys11–14. Critically, we 
also found that the reduction in noise correlation depended on tuning 
similarity. Learning reduced the noise correlations between units with 
similar tunings (that is, positive signal correlations) and increased the 

level (for example, changes in tuning curves or noise correlations), 
whereas the effects of these mechanisms in VPL should be evaluated 
at the population level (that is, improved population representations). 
Although VPL is indeed associated with changes in both single-unit 
responses and improved population representations, it remains con-
troversial whether changes in single-unit responses are the actual 
cause or merely by-products of improved population representa-
tions. While these conflicting models of VPL capture certain aspects of  
the empirical findings, they fail to generate falsifiable predictions 
about how changes in single-unit responses contribute to improved 
population representations.

A major obstacle to comparing the conflicting models of VPL is the 
complex interactions between different aspects of single-unit responses 
(for example, tuning curves and noise correlations) on population rep-
resentations. Computational neuroscience research has elucidated that 
the impact of noise correlations on population representations heavily 
depends on its interaction with tuning curves15. It is important to note 
that reduced noise correlations do not inherently enhance information 
in a neural population16–18. Moreover, the challenge is exacerbated by 
the fact that their interaction effects are even changing rather than 
remaining stable throughout a training process. These dynamic changes 
further complicate the understanding of how training affects their inter-
actions. To overcome this, a comprehensive computational approach is 
imperative to quantify and disentangle the effects of different changes 
in single-unit responses, such as sharpened tuning curves and reduced 
noise correlations, on neural representations at the population level.

To comprehensively explain these conflicting models, we devel-
oped a neural geometry approach of VPL. In this approach, trial-by-trial 
population responses elicited by two stimuli for discrimination form 
two differentiable manifolds in a high-dimensional neural space. In this 
space, changes in single-unit responses (for example, tuning curves, 
Fano factor and noise correlations) can be interpreted as changes 
in several fundamental and measurable geometric properties (for 
example, centroids, size and orientations) of neural manifolds. This 
approach allows quantitative comparisons of conflicting models of 
VPL and assessments of their contributions to population representa-
tions within the same computational framework. Thus, this approach 
directly bridges single-unit responses and population representations 
and offers a normative account of the potential neural mechanisms 
underlying VPL. Specifically, this approach proposes four possible 
training-induced geometric changes (signal enhancement, manifold 
shrinkage, signal rotation and manifold warping) that can summarize 
all previous models of VPL. Thus, improved population representa-
tions can be achieved by one or a combination of the four interpretable 
mechanisms.

Our study includes theoretical modelling and empirical tests of 
model predictions. First, to assess this neural geometry approach, we 
trained deep convolutional neural networks (DCNNs) on the typical VPL 
task—orientation discrimination learning—and found that the DCNNs 
successfully replicated a wide range of psychophysical and imaging 
findings in humans, as well as neurophysiological findings in monkeys. 
Second, analyses of the geometric mechanisms mentioned above 
suggest that changes in both tuning curves and noise correlations 
are indeed present in VPL. Third, and most importantly, our analysis 
further revealed that neither changes in tuning curves nor changes 
in noise correlations at the single-unit level contributed significantly 
to improved population representations. Surprisingly, we found that 
neural manifold shrinkage induced by reduced response variability 
emerged as the primary mechanism driving VPL. Our neural geometry 
approach generates several empirical testable predictions. We directly 
tested these predictions on empirical data across different tasks, dif-
ferent levels of measurement and different brain regions in different 
species. Remarkably, we found that the geometry approach incorpo-
rating manifold shrinkage aligned closely with the activity of artificial 
neurons in DCNNs trained on VPL of motion direction discrimination 
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noise correlations between units with opposite tunings (that is, negative 
signal correlations) (Supplementary Fig. 2). Previous theoretical work 
has suggested that the former type of noise correlations is detrimental 
for information coding and the latter type is beneficial15,16. The pattern 
of reduced detrimental and increased beneficial noise correlations has 
been discovered with learning tasks in songbirds26 and with attention 
tasks in monkeys27.

In addition to these classical neurophysiological findings in  
VPL, our network also captures some important response properties of 
sensory neurons in the primate early visual system. First, the relation-
ship between the Fano factor and orientation tuning of the artificial 
neurons bears strong resemblances to the empirical measures of V1 
neurons in monkeys28 (Supplementary Fig. 2). Second, we found a 
positive relationship between signal correlation and noise correlation 
among artificial neurons in all layers (Supplementary Fig. 2). This rela-
tionship has also recently been documented as a ubiquitous phenom-
enon in both electrophysiological29–31 and human imaging17,18,32 studies.

Taken together, these results suggest that our DCNNs are power-
ful models and allow us to explore neurocomputational mechanisms  
that may be difficult to elucidate in empirical experiments. Here we 
focus on the qualitative similarities of learning-induced changes  
in DCNN and in certain brain regions. However, we did not attempt  
to claim one-on-one mapping between DCNN layers and brain  
regions because this requires one to build precise encoding models.

Four mechanisms and the neural geometry approach of VPL
How would improved sensory discrimination manifest in high- 
dimensional population responses? In the simplified one-dimensional 
scenario (Fig. 3a), the classical signal detection theory posits that 

better sensory discrimination can be achieved by either increasing 
the distance between the means (that is, signal enhancement) and/or 
decreasing the variance (that is, noise reduction) of the two response 
distributions. In multivariate population responses, the two stimuli to 
be discriminated instead generate two multivariate response distri-
butions (that is, neural manifold) in a high-dimensional neural space 
whose dimension corresponds to the number of units in a population 
(Fig. 3b,c). In a simplified visualization in a two-dimensional space 
(Fig. 3d), the two distributions are elliptical due to noise correlations 
between units. We refer to the vector connecting the mean of the  
two distributions as the signal vector and its modulus length (that is, 
the Euclidean distance between the two manifold centroids) as the 
signal separation.

In the high-dimensional neural space, our neural geometry 
approach of VPL proposes that visual training improves sensory dis-
crimination by shaping some fundamental geometric properties of 
the neural manifolds. Here, under this approach, there exist only four 
possible mechanisms to further separate two neural manifolds (equa-
tion (4) in Methods). First, according to the classical signal detection 
theory, the signal enhancement mechanism predicts an increased 
Euclidean distance between the centroids of the two neural manifolds 
(Fig. 3e). However, we found that the signal separation between the  
two manifolds did not significantly increase with learning in all five  
layers, and even slightly decreased in the first two layers (Fig. 3f; one- 
sided paired t-test, all t(3) > −1.27, all P > 0.146, all Bayes factor BF10 <1.46; 
see full statistical results in Supplementary Table 3). Second, the mani-
fold shrinkage mechanism predicts that visual training reduces the 
trial-by-trial response variance of units, thereby reducing the size of 
the manifolds (Fig. 3g). This is what we found in all five layers (Fig. 3h; 
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Fig. 1 | DCNN Modelling of orientation VPL. a,b, A DCNN (a) is trained on an 
orientation discrimination task (clockwise, CW or counterclockwise, CCW) with 
Gabor stimuli embedded in different levels of image noise (b). c,d, Orientation 
discrimination accuracy is improved from pre-test (c) to post-test (d). 
 e,f, Training induces a downshift of the threshold versus noise function (f),  
an effect that is qualitatively similar to existing human psychophysical results 

(e, corresponds to the 70.7% accuracy condition in fig. 1 of ref. 7). The absolute 
quantitative differences between e and f may be due to differences in the overall 
SNR or the number of layers and units between the human visual system and the 
DCNN. Data are presented as mean ± s.e.m, with error bars and error shadings in c 
and d representing the s.e.m. across four (n = 4) reference orientations.
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one-sided paired t-test, all t(3) > 8.39, all P < 0.002; see full statistical 
results in Supplementary Table 4). We further included two previously 
overlooked mechanisms that can only occur in high-dimensional neural 
space and increase manifold discriminability. In the third mechanism, 
although visual training did not increase signal separation, it may 
change the relative positions of the centroids of the two manifolds and 
consequently increase discriminability due to the elliptical shape of 
the manifolds (Fig. 3i). Interestingly, we found that the signal vectors 
in each layer were rotated by ~50–70° after training (Fig. 3j). We call 
this mechanism signal rotation. Fourth, visual training can warp the 
shapes of the high-dimensional neural manifolds while keeping the 
size of the manifolds unchanged. As indicated by the change of covari-
ance structure, we found that visual training systematically warped the 
shape (that is, covariance structures) of the high-dimensional neural 
manifolds (Fig. 3k–m). We refer to this mechanism as manifold warping. 
Note that manifold warping includes both the changes in correlation 

structures and the redistribution of variances across individual units, 
while holding the total variance constant. It is manifold shrinkage that 
attenuates the total variance.

Information-theoretic analyses quantified mechanisms of VPL
Given the four possible mechanisms (that is, signal enhancement, 
manifold shrinkage, signal rotation and manifold warping) and their 
complex interaction effects, how can we delineate their respective 
contributions to improved population representations? Here we use 
linear Fisher information to quantify manifold separability. Besides, 
we introduce a stepwise approach to further disentangle the respec-
tive contributions of the four possible mechanisms. Specially, their 
respective contributions are assessed by sequentially allowing only 
one mechanism to occur and quantifying its endowed changes in the 
linear Fisher information of whole populations (Fig. 4a). For example, 
as shown in Fig. 4, we first calculate how much information is enhanced 
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Fig. 2 | DCNN models reproduce empirical findings. a–j, Neural correlates of 
VPL in humans (a), monkeys (b–e) and our DCNN (f–j). Visual training improves 
stimulus decoding accuracy in related regions in the human brain (a) and 
decoding scores of Fisher’s linear discriminant (FLD) in monkey V1 (b). Visual 
training sharpens orientation tuning curves of neurons in monkey V4 (c) and also 
reduces Fano factors and interneuron noise correlations (d and e). Similar results 
are observed in the DCNN: network training also improves decoding accuracy 
in layers 3–5 (layers 1 and 2: one-sided paired t-test, t(3) > −1.79, all P > 0.08; layers 
3–5: one-sided paired t-test, t(3) < −3.59, all P < 0.02; see full statistical results in 
Supplementary Table 1; f), and aLFI (total information in each layer divided by 
the number of units in that layer) in layers 3–5 (layers 1 and 2: one-sided paired 

t-test, t(3) > −1.84, all P > 0.08; layers 3–5: one-sided paired t-test, all t(3) < −3.47, 
all P < 0.02; see full statistical results in Supplementary Table 2; g). Training 
sharpens orientation tuning curves of units in layers 1–4 in the DCNN (results 
of layer 4 only are shown in h). Similar reduction of Fano factors and noise 
correlations are observed in the DCNN (results of layer 1 only are shown in i and j).  
The data shown in h–j are the median value across units in a layer. The results of 
all five layers are shown in Supplementary Fig. 1. Panels a–e are reproduced by 
the data points shown in the original papers. Data are presented as mean ± s.e.m., 
with error bars and error shadings in f–j represent the s.e.m. across four (n = 4) 
reference orientations (error shadings in h are small and barely visible).
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by considering only the signal enhancement scenario, then by consider-
ing both signal enhancement and manifold shrinkage, and so on until 
all four mechanisms are included.

Interestingly, we found that the effect of signal enhancement 
is minimal in all five layers. This mechanism even reduces stimu-
lus information in layers 1 and 2. This is consistent with the reduced 
Euclidean distance in the first two layers (Fig. 3f). Manifold shrinkage 
enhances stimulus information in almost all layers. Interestingly, we 
found that signal rotation appears to enhance stimulus information 
(Fig. 4b, green bars). This is because rotation of the signal vectors dis-
rupts their relative parallelism to the covariance direction at pre-test, 
making them more orthogonal. Such changes increase the apparent 
information. However, the effect becomes minimal when manifold 
warping is further considered (Fig. 4b, magenta bars) because visual 
training also warps the covariance direction to realign it with the 
post-test signal vector, thereby reducing stimulus information (see 
more explanations in Supplementary Note 1 and full statistical results 
in Supplementary Table 5).

Taken together, we propose an interpretable and quantita-
tive neural geometry approach of VPL where visual training refines  
the geometry of representations in a high-dimensional neural space. 
Using this approach, we found that three of four possible mechanisms 
occur in VPL. Most importantly, we found that manifold shrinkage  
in population responses was the key mechanism underlying the 
improved population representations induced by visual training in 
the DCNN. However, all above findings are the results of theoretical 
modelling using our DCNN model of orientation discrimination learn-
ing. Several predictions here have never been tested or reported in 
empirical studies. In the rest of ‘Results’, we tested these predictions 
across diverse tasks, measurement modalities and species.

Motion direction discrimination learning in DCNN
The above analyses focus only on one classical VPL task—orientation 
discrimination and a specific neural network structure—a six-layer 
convolutional neural network. In this section, we switch to motion VPL—
another sensory domain that is also widely used in psychophysical33,34, 
human imaging3,4 and neurophysiological studies35. Importantly, 
motion VPL involves the processing of both spatial and temporal 
signals rather than merely static spatial information in orientation 
learning. Similarly, we inherited the first six layers of the pretrained 
C3D network36 and trained the neural network to perform a motion 
direction discrimination task commonly used in psychophysics (see 
Methods for stimulus and training details).

In the motion DCNN, we found similar mechanisms as in the  
orientation discrimination learning task. First, motion direction  
discrimination training improved the behavioural performance of the 
network (Fig. 5b). Second, training also enhanced decoding accuracy 
and averaged linear Fisher information (aLFI) in later layers (Fig. 5c,d; 

layers 4–6: for decoding accuracy: one-sided paired t-test, all t(3) < −7.14, 
all P < 0.02; for aLFI: one-sided paired t-test, all t(3) < −7.22, all P < 0.003; 
see full statistical results in Supplementary Tables 6 and 7), suggesting 
that such training refines stimulus representation at the population 
level. Third, the effects of motion direction discrimination training 
on individual units in layer 6 are also pronounced (see results for all six 
layers in Supplementary Fig. 3). We found that training reduced Fano 
factor (Fig. 5e; one-sided paired t-test, t(3) = 57.58, P < 0.001, one-sided 
95% confidence interval (CI) 3.1 × 10−2 to ∞, Cohen’s d = 38.75) and noise 
correlations (Fig. 5f; one-sided paired t-test, t(3) = 42.84, P < 0.001, 
one-sided 95% CI 4.4 × 10−4 to ∞, Cohen’s d = 2.19). Fourth, training did 
not significantly improve signal separation (Fig. 5g; one-sided paired 
t-test, t(3) = −0.98, P = 0.198, one-sided 95% CI −∞ to 1.7 × 10−2, Cohen’s 
d = −0.19, BF10 1.22) but markedly reduced response variance (Fig. 5h; 
one-sided paired t-test, t(3) = 59.05, P < 0.001, one-sided 95% CI 2.2 × 10−2 
to ∞, Cohen’s d = 43.89). In addition, motion direction discrimination 
training also induced two previously overlooked mechanisms: signal 
rotation (Fig. 5i) and manifold warping (Fig. 5j,k). Most importantly, 
the four mechanisms induced by the training had similar respective 
contributions to population representations (Fig. 5l).

Motion direction discrimination learning in the human brain
The converging results in the DCNNs of orientation and motion  
direction discrimination, and the remarkable agreement between our 
DCNNs and existing empirical neuroscientific findings, support the 
biological plausibility of our DCNNs. However, it remains unknown 
whether these predictions are present only in the DCNNs and have 
no biological basis in the brain. To address this question, we analysed 
BOLD responses in the cortex of human subjects before and after 
they were trained on a motion direction discrimination task (Fig. 6a,  
ref. 37). Twenty-two human subjects participated in the motion VPL 
study. Subjects were trained for 10 days on a fine-direction discrimi-
nation task, and psychophysical and functional magnetic resonance 
imaging (fMRI) tests were performed before and after training.

We identified the early visual areas (V1–V3), the motion-selective 
regions (V3A and hMT+) and the decision region (intraparietal sulcus, 
IPS) using independent functional localizer experiments (Fig. 6b). 
We estimated single-trial responses of voxels in these regions and 
then performed decoding analyses in these predefined regions, find-
ing that motion training significantly enhanced decoding accuracy 
(Fig. 6c; V3A: one-sided paired t-test, t(21) = −2.01, P = 0.029, one-sided 
95% CI −∞ to −3.7 × 10−3, Cohen’s d = −0.25; hMT+: one-sided paired 
t-test, t(21) = −1.95, P = 0.032, one-sided 95% CI −∞ to −3.3 × 10−3, Cohen’s 
d = −0.50) and aLFI (Fig. 6d) in areas V3A and hMT+ (V3A: one-sided 
paired t-test, t(21) = −2.36, P = 0.014, one-sided 95% CI −∞ to −5.0 × 10−4, 
Cohen’s d = −0.11; hMT+: one-sided paired t-test, t(21) = −1.99, P = 0.030, 
one-sided 95% CI −∞ to −2.3 × 10−4, Cohen’s d = −0.47), a result consistent 
with several human fMRI studies on motion VPL3,4,22.

Fig. 3 | Four possible mechanisms of VPL in neural populations. a, To enhance 
sensory discriminability, the classical signal detection theory posits that signal 
enhancement predicts enlarged distances between two mean values while noise 
reduction predicts reduced variance of the two stimulus response distributions 
(stim1 and stim2). b, Stimulus orientation as a continuous stimulus variable 
can evoke high-dimensional population responses. c, If we continuously sweep 
the orientation value, the mean of population responses forms a closed-form 
ring in a high-dimensional neural space with dimensions equal to the number 
of units. The mean population responses to the two stimuli in a discrimination 
task are two points on the manifold. d,e, In realistic population responses, the 
trial-by-trial population responses to the two stimuli form two high-dimensional 
response distributions (that is, neural manifolds, d). The manifolds look elliptical 
rather than spherical due to pairwise noise correlations between units. In this 
high-dimensional neural space, the signal enhancement mechanism predicts 
an increased Euclidean distance (that is, signal separation, e) between two high-
dimensional response distributions. f, However, no significant increase in signal 

separation is observed in any of the five layers (signal separation decreases in the 
first two layers; one-sided paired t-test, all t(3) > −1.27, all P > 0.146, all BF10 <1.46; 
see full statistical results in Supplementary Table 3). g, The manifold shrinkage 
mechanism predicts reduced variance of the two neural manifolds. h, This is 
observed in all five layers (one-sided paired t-test, all t(3) > 8.39, all P < 0.002; see 
full statistical results in Supplementary Table 4). i, The signal rotation mechanism 
predicts that the positions of the centroid (that is, mean) of the two manifolds 
are changed by training. j, The rotation angle ranges from approximately 50° to 
70° in all five layers. k, The manifold warping mechanism predicts that training 
changes the shape of noise correlations. l, Indeed, training mostly reduces the 
variance of the high-variance principal components of the population responses. 
The principal components (showing only components that account for >99% 
of the total variance) are ranked from high to low variance. m, The directions of 
the principal components rotate from pre- to post-test. Data are presented as 
mean ± s.e.m., with error bars and error shadings in f–m representing the s.e.m. 
across four (n = 4) reference orientations.
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We further investigated the coding principles in areas V3A and 
hMT+ and repeated the above analyses of DCNNs on fMRI data. 
Note that here we performed the same analyses on voxels instead of  
artificial neurons in DCNNs. Consistent with the predictions of the 
DCNNs, motion direction discrimination training in humans did 
not increase signal separation (Fig. 6e, V3A: one-sided paired t-test, 
t(21) = 0.06, P = 0.526, one-sided 95% CI −∞ to 5.3 × 10−2, Cohen’s d = 0.01, 
BF10 0.45; hMT+: one-sided paired t-test, t(21) = 0.36, P = 0.639, one-sided 
95% CI −∞ to 9.5 × 10−2, Cohen’s d = 0.09, BF10 0.47) but markedly reduced 

voxel response variance (Fig. 6f) in both areas (V3A: one-sided paired 
t-test, t(21) = 2.87, P = 0.004, one-sided 95% CI 2.9 × 10−2 to ∞, Cohen’s 
d = 0.16; hMT+: one-sided paired t-test, t(21) = 1.97, P = 0.031, one-sided 
95% CI 4.6 × 10−3 to ∞, Cohen’s d = 0.46). Motion direction discrimi-
nation training also significantly reduced intervoxel correlations in 
hMT+ (Fig. 6g; one-sided paired t-test, t(21) = 1.90, P = 0.035, one-sided 
95% CI 2.5 × 10−3 to ∞, Cohen’s d = 0.31). The mechanism of signal rota-
tion was also evident, as indicated by the average ~55° rotation of the 
signal vectors in both areas (Fig. 6h). In addition, training warped the 
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magnitude and direction of the covariance (Fig. 6i,j). Most importantly, 
the respective contributions of these four mechanisms in both brain 
regions were similar to the pattern in the DCNNs (Fig. 6k).

Contrast discrimination learning in monkey V4
Voxel responses in fMRI studies reflect macroscopic brain activity that 
aggregates the responses of ~300,000–50,000 neurons38. It remains 
unclear whether the mechanisms we have discovered so far also exist at 
the local circuit level of single neurons or small clusters of neurons. To 

our knowledge, these predictions based on our neural network models 
have not been systematically tested using intracranial recording.

To further test our hypotheses on neuronal spiking activity, we 
analysed the population responses of V4 neurons in two monkeys 
(Fig. 7a) at the early stage and at the late stage of learning to perform a 
fine-contrast discrimination task (Fig. 7b, ref. 14). In this task, each mon-
key was presented sequentially with two identical Gabor patches with 
different contrast levels. The contrast of the reference (that is, the first) 
stimulus was always fixed at 30%, and the contrast of the target (that is, 
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Fig. 4 | Information decomposition in neural populations. a, The effects of four 
mechanisms on population representations are decomposed into four distinct 
steps. b, The effects on information gain by sequentially adding each of the four 
mechanisms in each layer. For example, the increase in height from the brown 
to the blue bars indicates the positive contribution of manifold shrinkage to 
encoded stimulus information. Manifold shrinkage significantly increases the 
information (one-sided paired t-test, all t(3) > 12.1, all P < 0.001); signal rotation 
significantly increases the information (one-sided paired t-test, all t(3) > 5.2, all 
P < 0.006); manifold warping significantly decreases the information (one-sided 

paired t-test, all t(3) > 4.3, all P < 0.01). See full statistical results in Supplementary 
Table 5. c–f, Strong interaction effects between covariance and signal vector. For 
distributions with identical covariance (c and e; d and f), detrimental (c or f)  
or beneficial (d or e) effects on discriminability are possible, depending on the 
signal vector. Similarly, the effects of the signal vector also depend on its relative 
geometry to the axis of covariance. Data are presented as mean ± s.e.m, with error 
bars and error shadings in b representing the s.e.m. across four (n = 4) reference 
orientations.
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Fig. 5 | DCNN modelling of motion VPL. a, The DCNN of motion VPL uses 3D 
convolutions to process video stimuli. Here we simplify the four-dimensional 
feature maps in each convolutional layer and show them as 3D maps only for 
illustration purposes. b–d, Training improves DCNN direction discrimination 
performance (b), decoding accuracy (c; layers 4–6: one-sided paired t-test, all 
t(3) < −7.14, all P < 0.028; see full statistical results in Supplementary Table 6)  
and aLFI (d; layers 4–6: one-sided paired t-test, all t(3) < −7.22, all P < 0.003;;  
see full statistical results in Supplementary Table 7). e,f, For single-unit analyses, 
motion direction discrimination training also reduces the Fano factor  
(e; one-sided paired t-test, t(3) = 57.58, P < 0.001, one-sided 95% CI 3.1 × 10−2 to ∞, 
Cohen’s d = 38.75) and noise correlation (f; one-sided paired t-test, t(3) = 42.84, 
P < 0.001, one-sided 95% CI 4.4 × 10−4 to ∞, Cohen’s d = 2.19) in layer 6. g,i, Similar 
to orientation discrimination training, motion direction discrimination training 
does not significantly enhance signal separation (g; one-sided paired t-test, 

t(3) = −0.98, P = 0.198, one-sided 95% CI −∞ to 1.7 × 10−2, Cohen’s d = −0.19, BF10 
1.22) but rotates the position of the two distributions in layer 6 (i). h, Importantly, 
training clearly reduces the response variance in layer 6 (one-sided paired t-test, 
t(3) = 59.05, P < 0.001, one-sided 95% CI 2.2 × 10−2 to ∞, Cohen’s d = 43.89).  
j,k, Specifically, training reduces the variance of the high-variance PCs (j) and 
rotates the directions of all PCs (k), indicating a significant effect of manifold 
warping in layer 6. l, The pattern of information gain associated with the four 
possible mechanisms is consistent with that of orientation discrimination 
training (one-sided paired t-test, t(3) = 76.0, P < 0.001 for manifold shrinkage, 
t(3) = 3.80, P = 0.02 for signal rotation, t(3) = 17.7, P < 0.001 for manifold warping). 
See results for all six layers in Supplementary Fig. 3. Data are presented as 
mean ± s.e.m., with error bars and error shadings in c–l representing the s.e.m. 
across four (n = 4) reference directions. Note that some error bars are very small 
and barely visible.
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Fig. 6 | Motion VPL induces neural geometry changes in the human brain. 
a,b, Trial diagram and training paradigm (a), and ROIs in a typical subject (b). 
c,d, Motion direction discrimination training in humans significantly improves 
decoding accuracy (c; for V3A: one-sided paired t-test, t(21) = −2.01, P = 0.029, 
one-sided 95% CI −∞ to −3.7 × 10−3, Cohen’s d = −0.25; for hMT+: one-sided paired 
t-test, t(21) = −1.95, P = 0.032, one-sided 95% CI −∞ to −3.3 × 10−3, Cohen’s d = −0.50) 
and aLFI (d; for V3A: one-sided paired t-test, t(21) = −2.36, P = 0.014, one-sided 
95% CI −∞ to −5.0 × 10−4, Cohen’s d = −0.11; for hMT+: one-sided paired t-test, 
t(21) = −1.99, P = 0.030, one-sided 95% CI −∞ to −2.3 × 10−4, Cohen’s d = −0.47) in 
areas V3A and hMT+, a finding consistent with several existing fMRI studies of 
motion VPL. Note that the four data points in V3A appear as outliers in c and d, 
but the results still hold if these data points are removed. e–g, Motion direction 
discrimination training does not significantly change signal separation in V3A 
and hMT+ (e; for V3A: one-sided paired t-test, t(21) = 0.06, P = 0.526, one-sided 
95% CI −∞ to 5.3 × 10−2, Cohen’s d = 0.01, BF10 0.45; for hMT+: one-sided paired 

t-test, t(21) = 0.36, P = 0.639, one-sided 95% CI −∞ to 9.5 × 10−2, Cohen’s d = 0.09, 
BF10 0.47) but reduces voxel response variance in V3A and hMT+ (f; for V3A: 
one-sided paired t-test, t(21) = 2.87, P = 0.004, one-sided 95% CI 2.9 × 10−2 to ∞, 
Cohen’s d = 0.16; for hMT+: one-sided paired t-test, t(21) = 1.97, P = 0.031, one-sided 
95% CI 4.6 × 10−3 to ∞, Cohen’s d = 0.46) and intervoxel noise correlations in 
hMT+ (g; one-sided paired t-test, t(21) = 1.90, P = 0.035, one-sided 95% CI 2.5 × 10−3 
to ∞, Cohen’s d = 0.31). h–j, Similar to the motion DCNNs, motion direction 
discrimination training in humans also rotates stimulus distributions (h), 
reduces the variance of high-variance PCs (i) and warps the covariance directions 
(j). k, The patterns of information gain associated with the four mechanisms 
are consistent with those in the DCNNs of both orientation and motion VPL. 
The unit PSC represents percent signal change of BOLD signals. Individual data 
points represent the human subjects. Data are presented as mean ± s.e.m., with 
error bars in all panels representing the s.e.m. across subjects (n = 22). *P < 0.05, 
**P < 0.01.
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the second) stimuli varied systematically near the reference contrast 
(that is, 27%, 28%, 29%, 31%, 32% and 33%). This contrast discrimination 
training significantly improved behavioural performance (Fig. 7c; 
one-sided paired t-test, t(5) = −4.61, P = 0.003, one-sided 95% CI −∞  
to −4.7 × 10−2, Cohen’s d = −1.57). Most importantly, responses of  
multiple channels were continuously recorded via chronically 
implanted electrodes in area V4 (29 and 20 channels for monkeys  
1 and 2, respectively) throughout training (21 and 23 training sessions 
for the two monkeys, respectively). This continuous multiunit record-
ing is the key to disentangling population-level changes associated 
with VPL.

We used the above analyses (previously applied to DCNNs and 
human fMRI data) and applied them to the monkey V4 responses, 
and again found highly consistent results (see results of each  
monkey in Supplementary Fig. 4). First, contrast discrimination train-
ing significantly improved stimulus information at the population 
level (Fig. 8a,b; decoding accuracy: one-sided paired t-test, t(5) = −6.03, 

P < 0.001, one-sided 95% CI −∞ to −3.6 × 10−2, Cohen’s d = −3.10; aLFI: 
one-sided paired t-test, t(5) = −2.21, P = 0.039, one-sided 95% CI −∞ to 
−52, Cohen’s d = −0.76). Second, at the individual level, contrast dis-
crimination training also significantly reduced Fano factors (Fig. 8c; 
one-sided paired t-test, t(5) = 7.28, P < 0.001, one-sided 95% CI 8.8 × 10−2 
to ∞, Cohen’s d = 3.43) and noise correlations (Fig. 8d; one-sided  
paired t-test, t(5) = 7.46, P < 0.001, one-sided 95% CI 2.6 × 10−2 to ∞, 
Cohen’s d = 5.80), consistent with several existing findings. Inter-
estingly, while the trial-by-trial variance was significantly reduced  
after training (Fig. 8f; one-sided paired t-test, t(5) = 13.24, P < 0.001, 
one-sided 95% CI 1.6 × 10−1 to ∞, Cohen’s d = 8.70), no apparent change 
in signal separation was observed (Fig. 8e; one-sided paired t-test, 
t(5) = −1.957, P = 0.054, one-sided 95% CI −3.7 × 10−1 to ∞, Cohen’s 
d = −0.30, BF10 2.41), suggesting the predominant role of manifold 
shrinkage. Importantly, we again observed evidence for signal rotation 
(Fig. 8g) and manifold warping (Fig. 8h,i). The stepwise information 
analyses also qualitatively replicated the relative contributions of  
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Fig. 7 | Single-unit analyses of contrast discrimination learning in monkey V4. 
a,b, We analysed population responses in area V4 (a) of two monkeys while they 
were trained on a fine contrast discrimination task (b). The first four and last four 
training sessions were grouped as pre- and the post-test conditions, respectively. 
Contrast discrimination training significantly improved behavioural 
performance from the early to late stage of training (c; one-sided paired t-test, 
t(5) = −4.61, P = 0.003, Cohen’s d = −1.57). c, All individual data points represent 
the six target contrast conditions (27%, 28%, 29%, 31%, 32% and 33%; the reference 

contrast is 30%). Each point is averaged over the two monkeys. See plots for 
individual monkeys in Supplementary Fig. 4. Data are presented as mean ± s.e.m., 
with error bars indicate the s.e.m. across the six conditions (n = 6). d–g, The full 
width at half maximum of the response distributions of four pairs of channels at 
pre- and post-test (d and e for monkey 1 and f and g for monkey 2). The solid lines 
represent 30% reference contrast, and the dashed lines represent 29% and 31% 
target contrast in monkey 1 and monkey 2, respectively. These results show that 
learning systematically changes the geometries of the multivariate responses.
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the four mechanisms to the total stimulus information encoded in  
the population (Fig. 8j).

Discussion
It has been controversial whether single-unit properties such as  
sharpened tuning curves9,10 or reduction of noise correlations11,12  
contribute to VPL. Our information-theoretic analysis on neural geom-
etry suggested that, although these changes were indeed observed, 
they did not contribute significantly to the improved population 
repre sentations associated with VPL. Rather, we found that the totally  
overlooked mechanism—the response variance of individual units  
(that is, manifold shrinkage)—is the primary contributor to the 
improved population representations associated with VPL. These 
results were further tested on DCNNs, human fMRI data and monkey  
neurophysiological data associated with different VPL tasks and  
brain regions.

Given the pronounced changes in tuning curves and noise  
correlations observed after training, why do they not contribute to 
VPL? Conventional approaches treat changes in tuning curves and  
in noise correlations as two independent factors mediating VPL.  
However, according to the neural geometry approach, the effects 
of tuning curve changes can be decomposed into two parts: signal 
enhancement independent of noise correlations and signal rotation 
interacting with noise correlations (equation (4) in Methods). We 
observed minimal contributions of signal enhancement to population 

representations. Although we observed the phenomena of signal rota-
tion and manifold warping, their respective contributions appeared 
significant but their overall joint effects were minimal because their 
respective effects can cancel each other out (Supplementary Fig. 5).

Our finding that manifold shrinkage is the primary contributor to 
improved population representations is of unique significance in 
constraining the model of VPL. We note that the goal of perceptual 
learning is to produce more discriminable population representations 
such that downstream decision units can easily read out sensory infor-
mation. However, deciphering the underlying format of discriminable 
representations is non-trivial because discriminable representations 
can be achieved by any or combinations of four possible mechanisms. 
The key contribution of our work lies in the systematic quantification 
of the four mechanisms. In manifold shrinkage, the total variance  
of the high-dimensional distributions is scaled down (that is, λ in equa-
tion (4) is reduced). In other words, the two stimulus distributions 
simply shrink to a smaller size (Fig. 4). Note that manifold shrinkage  
is independent of any tuning changes and noise correlation changes. 
We also emphasize that manifold shrinkage and manifold warping are 
two different mechanisms. In our approach, manifold warping redis-
tributes the variance of the high-dimensional distributions in different 
directions (that is, λ̂i and ξi in equation (4) are changed) but, unlike 
manifold shrinkage, the total amount of variance remains unchanged. 
Thus, the shape of the two stimulus distributions is significantly 
warped. We thus emphasize manifold shrinkage as a marker of global 
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Fig. 8 | Population activity analyses of contrast discrimination learning 
in monkey V4. a,b, Contrast discrimination training significantly enhanced 
stimulus information at the population level (for decoding accuracy: one-sided 
paired t-test, t(5) = −6.03, P < 0.001, one-sided 95% CI −∞ to −3.6 × 10−2, Cohen’s 
d = −3.10 (a); for aLFI: one-sided paired t-test, t(5) = −2.21, P = 0.039, one-sided 95% 
CI −∞ to −52, Cohen’s d = −0.76 (b)). c–f, Consistent with VPL in the DCNNs and the 
human brain, training monkeys on a contrast discrimination task reduced Fano 
factors (c; one-sided paired t-test, t(5) = 7.28, P < 0.001, one-sided 95% CI 8.8 × 10−2 
to ∞, Cohen’s d = 3.43), noise correlations (d; one-sided paired t-test, t(5) = 7.46, 
P < 0.001, one-sided 95% CI 2.6 × 10−2 to ∞, Cohen’s d = 5.80) and response 
variance (f; one-sided paired t-test, t(5) = 13.24, P < 0.001, one-sided 95% CI 

1.6 × 10−1 to ∞, Cohen’s d = 8.70) but had no significant effect on signal separation 
(e; one-sided paired t-test, t(5) = −1.957, P = 0.054, one-sided 95% CI −3.7 × 10−1 to ∞,  
Cohen’s d = −0.30, BF10 2.41). g–i, We also found evidence for signal rotation (g) 
and manifold warping (h for PC variance and i for PC rotation). j, The stepwise 
information analyses also show the similar pattern of the four mechanisms. The 
unit ‘spk/s’ indicates the number of spikes per second (that is, firing rate). We 
calculate aLFI and information gain using stimulus contrast as decimal values 
(that is, 0.29), so they have arbitrary units. Each point is averaged over the two 
monkeys. See plots for individual monkeys in Supplementary Fig. 4. Data are 
presented as mean ± s.e.m., with error bars indicating the s.e.m. across the six 
conditions (n = 6).
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population responses to differentiate it from trial-by-trial variability 
changes in single units.

Our neural geometry approach is consistent with the earlier 
applications of high-dimensional signal detection theory (MSDT) 
in psychophysics and systems neuroscience39,40. MSDT is a powerful 
tool for quantifying the discriminability of population representa-
tions. Although we also focus on the discriminability of population 
representations during the learning process, we extend this framework 
by conceptualizing MSDT as neural geometries to bridge changes in 
individual-level responses and changes in population representations. 
Specifically, changes in individual responses (for example, changes in 
tuning curves and/or noise correlations) are characterized as geometric 
transformations (for example, signal enhancement and manifold warp-
ing) of neural manifolds. These geometric transformations elucidate 
how discriminability in high-dimensional response distributions is 
enhanced. This geometric perspective enables experimentally testable 
predictions about learning effects of on neural manifolds, offering 
insights to adjudicate previous theories of VPL.

This high-dimensional geometric approach has been used in  
topics such as classification41, attention42 and neural coding43. The 
geometric similarities also predict perceptual similarities in humans44. 
A recent study45 found that such coordinates are not arbitrary, but  
privileged. The high-dimensional representational axes are highly  
consistent across different humans and even across different  
DCNNs. These representational axes lead to better readout or gener-
alization abilities.

Our work unifies several important existing findings of VPL. 
First, it has long been hypothesized that noise reduction is an impor-
tant mechanism of VPL6,7,21, but the exact underlying neural mecha-
nisms remain elusive. Our work demonstrates that at least manifold 
shrinkage due to reduced trial-by-trial response variability is a viable 
mechanism to support noise reduction. Second, Bejjanki et al.46 built 
a biological neural network and, similar to our task, simulated the 
effects of orientation VPL on Gabor stimuli with different levels of 
image noise. The results showed that changes in orientation tuning 
curve have only modest effects on psychophysical TvN functions. 
Using a different network architecture (pretrained artificial DCNNs), 
our study replicated the finding of sharpened orientation-selective 
tuning curves reported and also showed that the effects of such tun-
ing changes are modest. Our modelling here suggests that sharp-
ened tuning curves do not necessarily lead to improved population 
codes, given that other aspects of population responses are also 
changed by learning. Third, most existing human imaging studies and 
single-unit studies on VPL have focused only on changes in population 
representations3,4,22 or changes in individual neurons9,10, respectively. 
Previous studies attempted to address the relationship between the 
two levels by projecting high-dimensional neural manifolds onto a 
one-dimensional optimal decision plane13,22. However, we argue that 
this approach is inadequate (see analytical derivations in Supple-
mentary Note 2) and we should explicitly disentangle and quantify 
the effects of individual factors (see additional analysis in Supple-
mentary Fig. 6).

It is noteworthy that our approach is based on the assumption that 
VPL is associated with changes in neuronal populations. However, we do 
not dismiss all neuron-level accounts for VPL. For example, VPL could 
be conceptualized as a search in neuronal space for the most informa-
tive neurons for the trained task. These neurons are not necessarily 
the ones most responsive to the trained stimuli or those that repre-
sent them most efficiently. For example, post-adaptation orientation 
discrimination in expert subjects has been shown to involve learning 
that the most informative channel/filter for discrimination is rotated 
about 10–20° away from the observed stimulus47. Similar results were 
observed in monkey neurons during training of VPL of orientation 
discrimination9. The specific rotation magnitude may depend on the 
tuning curves and noise properties of the neurons.

Our study still has several limitations that could be addressed 
by future studies. First, although DCNN has recently emerged as a 
promising computational framework for modelling, there still exist 
clear differences between DCNNs and biological visual systems. Our 
models here are all feedforward architectures and lack the compo-
nent of top-down modulation. Top-down modulation is an important 
aspect of supervised training48 and particularly useful for consider-
ing within-trial neural dynamics49. Second, VPL can be achieved by 
unsupervised training50 or even pure mental imagery51. These learn-
ing regimes cannot be explained by current models. Third, this study 
examines only how VPL improves population codes of trained stimuli. 
It remains unclear how learning effects generalize to other untrained 
stimuli, which is recently proposed as a key question in VPL52. Fourth, 
it remains unclear the perceptual consequences predicted by our 
neural geometry approach, especially by each mechanism. To address 
this, we conducted thorough simulations of neural geometric changes 
and derived their predictions on perceptual detection and perceptual 
estimation tasks (Supplementary Note 3 and Supplementary Fig. 7), 
which could be further tested in future studies. Our framework also 
provides a theoretical foundation to understand neural underpinnings 
of generalization in future studies.

Methods
DCNN modelling of orientation VPL
Stimuli. The network was trained to discriminate whether a target stim-
ulus was tilted 1° clockwise or counterclockwise relative to a reference 
stimulus. All reference stimuli in the orientation discrimination task 
were Gabor patterns (227 × 227 pixels; spatial frequency, 40 pixels per 
cycle; standard deviation of the Gaussian spatial envelope, 50 pixels).  
The stimuli were varied in contrast (0.1 to 1.0 in 0.1 increments) 
and image noise level (eight levels: 0.005, 1, 5, 10, 15, 30, 50 and 75).  
Similar to existing psychophysical studies53, the image noise level is 
defined as the fraction of pixels randomly selected and replaced by 
Gaussian noise with a standard deviation of 15 gray level units. To mimic 
intrinsic sensory noise, we also added Gaussian white noise (standard 
deviation 10) to each stimulus19. To match the spatial frequency of 
noise and signal, the size of the replaced pixels was set to be 8 × 8. 
Four reference orientations (35°, 55°, 125° and 145°) were used, and we 
trained ten DCNNs (ten different random seeds, see below) for each of 
the four reference orientations. This yields 40 DCNNs models of VPL.

Neural networks and training. A DCNN20 was used to simulate the 
orientation VPL. We retained the first five convolutional layers of the 
pretrained AlexNet and replaced its three fully connected layers with 
a single linear fully connected layer for perceptual choice. The network 
was configured in a Siamese fashion to perform the two-alternative 
forced-choice task: the same network was fed with both the target and 
the reference stimuli, producing two scalar outputs, ht and hr, respec-
tively. The network then made the final decision with a probability p 
(classification confidence) calculated by the sigmoid function

p = eht−hr

1 + eht−hr
. (1)

The entire training procedure consisted of two distinct phases: 
the pretraining phase and the VPL phase. In the pretraining phase, 
the network was trained on full-contrast noiseless stimulus pairs to 
understand the task and to establish the pre-test baseline. In the VPL 
phase, the network was trained on stimulus pairs across all contrasts 
(ten levels) and noise levels (eight levels). The network was trained 
for 5,000 epochs in the pretraining phase and 500 epochs in the VPL 
phase using the stochastic gradient descent learning algorithm. The 
learning rate and the momentum were set to 1e−5 and 0.9, respectively. 
The parameters were updated to minimize the cross-entropy loss 
between the network outputs and the true stimulus labels. The initial 
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parameters in the fully connected layer were set to zero, as in ref. 19, 
while those in the convolutional layers were taken directly from a 
pretrained AlexNet available at http://dl.caffe.berkeleyvision.org/
bvlc_AlexNet.caffemodel. We trained one model for each of the 
four reference orientations, and the entire procedure was repeated  
ten times for each reference orientation to control for randomness. All 
model and training procedures were implemented using Python 3.10.9 
conda environment, including pytorch 1.13.1, scikit-learn 1.2.0. Details 
of the full conda environment are provided via GitHub at https://github.
com/Yu-AngCheng/neural_geometry_VPL.

Behavioural and neural changes. For each reference orientation, 
we used the stimuli with the same orientations in pre-/post-tests and 
in training phase. The only difference is that stimulus images were 
randomly generated in each trial. We derived the behavioural psycho-
metric curves of the network before and after the VPL phase defined 
above. Specifically, the behavioural performance of the network was 
evaluated by measuring its classification confidence (equation (1)) at 
all 80 conditions (10 contrast levels × 8 noise levels) with 1,000 trials 
in each condition. The classification confidence of all 1,000 trials was 
averaged (Fig. 1c,d). The behavioural TvN curves (Fig. 1f) of the model 
were further derived for comparison with human psychophysical 
results. Specifically, for each noise level, a contrast threshold was 
obtained by interpolating accuracy–contrast psychometric curves at 
the accuracies of 55% and 70% for pre-test and post-test respectively.

To quantify the activity of artificial neurons, in each trial, the firing  
rate of each artificial neuron was measured as the output of local 
response normalization or rectified linear unit (ReLU) layers, averaged 
over all locations. All measurements were obtained by simulating 1,000 
trials for better estimation. To ensure that units were truly driven by the 
stimuli, only units with a mean firing rate greater than 0.001 before and 
after training were included in the analyses19. To perform population 
decoding analyses, we trained a linear classifier on the firing rates of the 
artificial neurons to discriminate the target and the reference stimuli. 
The classifier was trained on half of the 1,000 simulated trials, while 
the other half served as the test dataset.

To characterize the response properties of individual units, we 
measured orientation-selective tuning curves by sweeping the orienta-
tion of high-contrast stimuli from 0° to 180°. The tuning curves were 
derived by averaging 100 simulated trials for each orientation. The 
resulting tuning curves were then smoothed with a 10° Gaussian kernel.  
To control the heterogenous response range across units, we then 
normalized the tuning curves of each unit by its maximum response 
and averaged the tuning curves across units to obtain the group-level 
tuning curves. The group-level tuning curves were then fitted with  
a Gaussian function and rescaled to ~0–1 for better comparison.

To calculate the Fano factor of each unit, we simulated 1,000 trials  
for each reference orientation. The Fano factor of each artificial  
neuron is defined as the ratio of the variance of the firing rate to its 
mean. Similarly, noise correlations between artificial neurons were 
calculated as the correlations between unit firing rates over the 1,000 
simulated trials for each reference orientation. We took the median 
of the Fano factor across units in each layer to generate the data plot 
(Fig. 2i). We took the median of the lower triangle of the noise correla-
tion matrix in each layer to generate the data plot (Fig. 2j). The error 
bars in Fig. 2i,j represent the standard errors across four reference 
orientations.

Linear Fisher information analyses. To understand how neural acti-
vation contributes to behavioural improvements, we applied linear 
Fisher information analysis to population responses. We considered 
the firing rates of the same groups of units under the reference and the 
target stimulus conditions as two distributions in a high-dimensional 
neural space. We refer to the signal vector as the vector connecting 
the mean of the two distributions. A signal vector is calculated as the 

difference between the mean firing rates of units to two stimuli. The 
signal separation is referred to as the modulus length of the signal 
vector, and the angle of the signal vectors before and after training is 
referred to as the signal rotation angle.

To measure how much information was contained in a layer per 
unit, we calculated the aLFI as follows:

aLFI = 1
n ⋅ df

TΣ
−1
df

Δθ2
(2)

Σ̄ = Σ1+Σ2

2

= VT
1 C1V1+VT

2C2V2

2
,

(3)

where n is the number of units in a layer, Δθ is the separation between 
the target stimulus and the reference stimulus (that is, 1°), df  is  
the signal vector, Σ  is the mean of the covariance matrices (that is, Σ1  
and Σ2) of units responding to the two stimuli, V  is a diagonal matrix 
with the variance of the units as the diagonal terms, and C  is the correla-
tion matrix of the population with all diagonal elements equal to 1.

To further elaborate on the potential mechanisms of the improved 
LFI, we performed an eigendecomposition on the covariance matrix 
Σ , where we obtained λi, the eigenvalue of Σ̄, and ξi, its corresponding 
normalized eigenvector. The aLFI can be rewritten as follows:

aLFI = 1

nΔθ2

N
∑
i=1

(dfTξi)
2

λi

= 1

nΔθ2

||df ||2

λ

N
∑
i=1

( ̂df
T
ξi)

2

λ̂i
,

(4)

where λ is the mean variance, and λi = λ × λ̂i. ̂df = df
|df |

 is the unit vector  

with length of 1 and direction as the same as the signal vector df .  
According to equation (4), we disentangled the potential mechanisms 
of improved LFI into four subparts: signal enhancement, reflected by 
the modulus length |df|; manifold shrinkage, reflected by the mean 
variance of ̄λ; signal rotation, reflected by the direction of the signal 
vector df ; and manifold warping, reflected by the relative angle of  
both ξi and λ̂i. We applied a stepwise approach to assess their respec-
tive contributions by sequentially allowing only one mechanism to  
occur and calculating the resulting changes in aLFI. Specifically, we 
first calculated aLFI at pre-test as

aLFIpre =
1

nΔθ2

||dfpre||
2

λ
pre

N
∑
i=1

( dfpre
T

||dfpre ||
ξpre
i )

2

λ̂prei

. (5)

Considering only the effect of signal enhancement, we can  
calculate its effect as

aLFIse =
1

nΔθ2

||dfpost||
2

λ
pre

N
∑
i=1

( dfpre
T

||dfpre ||
ξpre
i )

2

λ̂prei

. (6)

Note that the only difference here is that the ||dfpre||
2 in equation (5) 

is replaced by the ||dfpost||
2  in equation (6). The difference between  

aLFIse and aLFIpre is considered as the information gain introduced by 
the signal enhancement mechanism (that is, the brown bars in in 
Fig. 4b). Following this idea, we can calculate the stepwise aLFI by 
one-by-one considering the effects of manifold shrinkage aLFIms, signal 
rotation aLFIsr and manifold warping (aLFImw or aLFIpost) as

aLFIms =
1

nΔθ2

||dfpost||
2

λ
post

N
∑
i=1

( dfpre
T

||dfpre ||
ξpre
i )

2

λ̂prei

(7)
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aLFIsr =
1

nΔθ2

||dfpost||
2

λ
post

N
∑
i=1

( dfpost
T

||dfpost ||
ξpre
i )

2

λ̂prei

(8)

aLFImw = aLFIpost =
1

nΔθ2

||dfpost||
2

λ
post

N
∑
i=1

( dfpost
T

||dfpost ||
ξpost
i )

2

λ̂posti

. (9)

The information gain in Fig. 4b indicates the difference between 
aLFIse, aLFIms, aLFIsr and aLFImw (that is, aLFIpost) as compared with  
the pre-test baseline aLFIpre. They are shown as brown, blue, green  
and magenta bars in Fig. 4b, respectively.

DCNN modelling of motion VPL
Stimuli. The experiment used random dot motion (RDM) stimuli, 
which consist of a cloud of independent moving dots with some degree 
of coherence in a given moving direction54. The network was trained to 
discriminate whether the moving direction of a target RDM stimulus 
was 4° clockwise or counterclockwise relative to its corresponding 
reference RDM stimulus. To meet the network’s specifications, the 
motion stimuli were 16-frame videos (112 × 112 pixels per frame). Within 
each frame, ~100 dots were displayed, with each dot represented by 
a cross of 3 pixels in both height and width. We set eight coherence 
levels (8.84%, 12.5%, 17.7%, 25%, 35.3%, 50%, 70.7% and 100%) and four 
reference directions (45°, 135°, 225° and 315°). The motion speed 
was 7.5 pixels per frame. All non-coherently moving dots appeared 
randomly in the image. The display of each frame was limited to a 
centred circle with a diameter of 112 pixels, with the surrounding areas 
displayed in black.

Neural network architecture and training. Our DCNN is a three- 
dimensional (3D) convolutional neural network inherited from the 
C3D network for action recognition36. The original C3D consists of 
ten convolutional layers and three fully connected layers. The main 
difference between C3D and AlexNet is that C3D uses 3D convolutional 
kernels to process spatiotemporal information. We kept the first six 
convolutional layers from the pretrained C3D and replaced the three 
fully connected layers with a fully connected layer that outputs a single 
scalar. The number of layers was chosen to (1) keep roughly similar num-
ber of parameters to the orientation DCNN and (2) to roughly match 
the number of regions of interest (ROIs) in the human neuroimaging 
experiment. Similar to the orientation DCNN, the motion DCNN was 
also configured in a Siamese fashion to perform the two-alternative 
forced-choice task based on the sigmoid function.

Similar to the orientation DCNN, the entire training procedure 
consisted of two phases: the pretraining phase and the VPL phase. Dur-
ing the pretraining phase, the network was trained on full-coherence 
noiseless RDM pairs, whereas during the VPL phase, the network was 
trained on stimulus pairs across all coherence levels (eight levels). The 
network was trained for 1,000 epochs in the pretraining phase and 
2,000 epochs in the training phase using stochastic gradient descent 
with a learning rate of 1e−7, momentum of 0.9 and weight decay of 
0.0005. The parameters were updated to minimize the cross-entropy 
loss between the network outputs and the true stimulus labels. The 
initial parameters in the fully connected layer were normally rand-
omized, whereas those in the convolutional layers were taken directly 
from a pretrained C3D available at https://download.openmmlab.com/
mmaction/recognition/c3d/c3d_sports1m_16x1x1_45e_ucf101_rgb/
c3d_sports1m_16x1x1_45e_ucf101_rgb_20201021-26655025.pth. The 
entire procedure was repeated ten times for each reference direction to 
control for randomness. All model and training procedures were imple-
mented using Python 3.10.9 conda environment, including pytorch 
1.13.1, scikit-learn 1.2.0. Details of full conda environment are provided 
via GitHub at https://github.com/Yu-AngCheng/neural_geometry_VPL.

Behavioural and neural analyses. The behavioural performance of the 
network was also evaluated by its classification confidence (equation 
(1)) at all coherence levels before and after the visual training phase. In 
addition, the firing rates of artificial neurons were measured on each 
trial as the output of the ReLU layers, averaged over all locations and 
timepoints. All measurements were taken over 1,000 simulated trials. 
To ensure that units were truly driven by the stimuli, only units with 
a mean firing rate greater than 0.001 before and after training were 
included in subsequent analyses.

To perform decoding analyses, we trained a linear classifier on 
the firing rates of the artificial neurons to discriminate between the 
target and the reference stimuli. To assess the performance of the 
classifier, we split all trials half–half as training and test datasets, and 
used the average performance of the test-set. For comparison with 
the electrophysiological data, we calculated the Fano factor of each 
unit as the ratio of the variance of the firing rate to its mean, and the 
noise correlations as the correlation between the firing rates of units 
when viewing the same RDM stimulus. In addition, to measure how 
much information was contained in a layer per unit, we calculated the 
aLFI (see above).

We further validated the computational mechanisms in the motion 
direction discrimination task. To this end, the firing rates of the same 
group of units under the reference and the target stimuli were also 
considered as two distributions in a high-dimensional neural space. 
In the high-dimensional neural space, we defined signal vector, signal 
separation, variance, correlation, signal rotation angle, principal com-
ponent (PC) strength and PC rotation angle as above.

Again, we computed linear Fisher information using a stepwise 
approach. For all models, we sequentially added signal enhancement, 
manifold shrinkage, signal rotation and manifold warping to the cal-
culation of linear Fisher information and examined how the informa-
tion within units varied with all four mechanisms. Figure 5l shows the 
results of the stepwise analysis in layer 6. Supplementary Fig. 3 shows 
the results in all six layers of the motion DCNN.

Human fMRI experiment
The human fMRI experiment data have been published in ref. 37  
for different research questions. The core analyses in this study  
beyond preprocessing and ROI definitions are specifically designed in 
this study. We provide relevant methods as follows and more detailed 
methods in Supplementary Note 4 to avoid cross-referencing.

Subjects and experimental procedures. A total of 22 human subjects 
(10 males and 12 females, ages 17–25 years) participated in the experi-
ment. All participants had normal or correct-to-normal vision. All par-
ticipants provided written informed consent, and the study obtained 
approval from the local ethics committee at Peking University (protocol 
number 2012-03-09). This study was not preregistered. All subjects 
were compensated 20 yuan and 100 yuan for an hour of behavioural 
and fMRI experiments, respectively. All participants were blinded to 
the study’s objectives.

All subjects were trained on a direction discrimination task 
(Fig. 6a; see Supplementary Note 4 for apparatus and stimulus 
details). The whole experiment consisted of three phases: pre-test 
(2 days), training (10 days) and post-test (2 days). On day 1 at pre-test 
and day 2 at post-test, subjects were tested on direction discrimina-
tion around 45° and 135° (angular difference 4°, 120 trials for each 
direction) to assess their behavioural performance before and after 
training. Subjects were trained on the fine-direction discrimina-
tion task for 10 days. Half of the subjects were trained at 45° and the 
other half at 135° (see training details in Supplementary Note 4). The 
assignments were randomized across subjects. Training-induced 
behavioural improvements have been reported in our previous work37. 
All visual stimuli were generated and presented via Psychtoolbox 3.0 
in MATLAB2013A.
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To assess the neural changes induced by visual training, two iden-
tical fMRI sessions were performed on day 1 at pre-test and day 2 at 
post-test, respectively. In each fMRI session, subjects completed four 
runs of the motion direction discrimination task. Each run contained 
30 trials for 45° and 135° (that is, a total of 120 trials for each direc-
tion). Each run also contained 15 fixation trials, and the trial order was 
randomized.

MRI data acquisition. All MRI data were acquired using a 12-channel 
phase array coil on a Siemens Trio 3T scanner at Peking University. The 
T1-weighted anatomical data with a resolution of 1 × 1 × 1 mm³ were 
collected for each subject. Echo-planar imaging (EPI) functional data 
were collected for the motion direction discrimination task, retinotopic 
mapping and motion localizer experiments. EPI data were acquired 
using gradient echo-pulse sequences from 33 axial slices, covering 
the whole brain. The standard EPI sequence used for data acquisition 
was as follows: a repetition time of 2,000 ms, an echo time of 30 ms, a 
flip angle of 90° and a resolution of 3 × 3 × 3 mm³. The slice order was 
interleaved ascending.

In addition to the four runs of the motion direction discrimination 
task, we also collected one or two retinotopic mapping runs52,55 and a 
motion localizer run55 to define ROIs.

MRI data analyses. In Brain Voyager QX (version 2.8.0), the anatomi-
cal data were transformed into the Talairach coordinate space. For 
all functional data, the first four volumes of each functional run were 
discarded to allow the longitudinal magnetization to reach a steady 
state. The functional data underwent several standard preprocessing 
procedures, including slice timing correction, head motion correc-
tion, spatial smoothing, temporal high-pass filtering (generalized 
linear model (GLM) with Fourier basis set at two cycles) and linear 
trend removal. Brain Voyager QX (version 2.8.0) was also used to 
preprocess the data of the retinotopic mapping experiment and the 
motion localizer experiment. We used the standard phase-encoding 
method to define the retinotopic visual areas V1, V2, V3 and V3A 
(refs. 56,57). A GLM was then applied to the motion localizer data 
to define the motion-selective voxels (hMT+ and motion-selective 
voxels in IPS).

The functional data of the motion direction discrimination  
task were preprocessed using SPM12 (www.fil.ion.ucl.ac.uk/spm).  
The data were aligned to the first volume of the first run of the first 
session, corrected for acquisition delay and then normalized to the 
Montreal Neurological Institute (MNI) coordinate space using an 
EPI template. We used the GLMdenoise package (version 1.4, http://
www.kendrickkay.net/GLMdenoise/) developed in ref. 58 without 
evoking multirun denoise procedures to estimate the single-trial 
activity of voxels.

Voxel population response analyses. We adapted the analysis previ-
ously used for artificial neurons in neural networks to the single-trial 
fMRI response estimates. To improve SNR, we selected the 60 most 
responsive voxels in each ROI at pre-test. We first investigated which 
ROI was involved in motion VPL by measuring the discriminability 
between two different motion conditions (trained direction, for exam-
ple, 45° versus untrained direction, for example, 135°) before and after 
training. We trained a linear classifier on the fMRI data to discriminate 
between the two motion conditions. To assess the performance of 
the classifier, we performed a leave-one-trial-out cross-validation, 
and the average performance on the leave-out test trial was used as 
the discriminability measure. We also computed the average linear 
Fisher information (see equations above) between the 45° versus 135° 
conditions to quantify stimulus discriminability. We found that motion 
direction discrimination training significantly improved stimulus 
discriminability in V3A and hMT+. Therefore, we included only V3A 
and hMT+ voxels in the subsequently analyses.

Similar to the analyses in the DCNNs, we defined the signal vector,  
the signal separation, the variance, the intervoxel correlations, the  
signal rotation angle, the PC strength and the PC rotation angle 
in the multivoxel high-dimensional space using the same method  
defined above (Fig. 6). In addition, we applied the same stepwise  
analysis approach of calculating aLFI to the fMRI data (Fig. 6k).

Monkey multiunit recording experiment
Part of the monkey psychophysical and neurophysiological data have 
been published in refs. 14,59. These previous studies showed quali-
tatively similar results of the learning-induced reduction in Fisher 
information, Fano factor and noise correlations via different analysis 
methods. Other results and analyses on the characteristics of popula-
tion responses in this study (that is, Figs. 7 and 8), especially the valida-
tion of signal rotation and manifold warping mechanisms, as well as 
the stepwise information analyses, are key contribution of our study. 
We provide relevant methods as follows and more detailed methods 
in Supplementary Note 5 to avoid cross-referencing.

Ethics statement and data collection. The Newcastle University 
Animal Welfare Ethical Review Board approved all procedures in this 
study. All experimental procedures were carried out in accordance with 
the European Communities Council Directive RL 2010/63/EC, the US 
National Institutes of Health Guidelines for the Care and Use of Animals 
for Experimental Procedures and the UK Animals Scientific Procedures 
Act. This study included two male monkey monkeys (5 and 14 years of 
age). This study was not preregistered. ARRIVE guidelines were used 
to report the research.

Experimental preparation. The surgical procedure is described in  
ref. 60 and Supplementary Note 5. The headpost and electrode imple-
mentations are also described in Supplementary Note 5. In brief, in 
monkey 1, two 4 × 5 grids of microelectrodes were implanted in area V4;  
in monkey 2, one 5 × 5 grid was implanted in V4. These chronically 
implanted electrodes allowed us to record population activity in area V4  
over the course of visual training. Importantly, we were able to record 
stably from a few small multiunit clusters. The stability of the recording 
is shown in ref. 14. Stable recording of multichannel neuronal activity 
allows analyses of changes in population responses induced by training.

Behavioural task and monkey training. All monkey training and 
data collections were conducted by CORTEX software (last updated 
in 2013, http://dally.nimh.nih.gov/index.html). The monkeys were 
trained in a contrast discrimination task in which subjects were asked 
to decide whether the contrast of a test stimulus was higher or lower as 
compared with that of a reference stimulus by making a saccade to one 
of two distinct locations (Fig. 7b). On each trial, the subject first kept 
fixation on the centre of the screen for 512 ms. After 539 ms of fixation, 
a vertically oriented reference Gabor stimulus with 30% contrast was 
presented, centred at the V4 receptive field coordinates. The outer 
diameter of the Gabor stimulus was truncated at 16° for monkey 1 and 
14° for monkey 2. After the Gabor stimulus, monkey 2 experienced an 
interstimulus interval of 512 ms. By contrast, monkey 1 experienced a 
randomly chosen interstimulus interval, ranging from 512 to 1,024 ms. 
During the interstimulus interval, only the fixation dot was presented. 
A test stimulus was then presented for 512 ms. This test stimulus was 
identical in size and orientation to the reference stimulus but differed 
in contrast, with the contrast level chosen pseudorandomly. The test 
stimulus was followed by another blank period of 512 ms during which 
only the fixation dot was visible. After the fixation dot, two target 
squares, one black and one white with a size of 0.5° in size, appeared 
to the left and right of the location where the reference and test stimuli 
were previously presented. The monkeys were cued to make a decision 
once the fixation dot disappeared. The monkeys were required to make 
a saccade to the white square within a 2° × 2° window if the test stimulus 
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had a higher contrast than the reference stimulus. Conversely, they 
were expected to make a saccade to the black square if the test stimu-
lus had a lower contrast than the reference stimuli. A correct saccade 
was rewarded with a fluid reward, while an incorrect saccade led to no 
reward and a 0.2 s timeout period.

The two monkeys were first trained on an easy version (target 
contrast 5% or 90%) of the contrast discrimination task. After they were 
fully familiar with the easy task, the target contrast increased from  
2 to 8, 12 and 14 levels. The data correspond to the 14 levels of  
target contrast (10%, 15%, 20%, 25%, 27%, 28%, 29%, 31%, 32%, 33%, 35%, 
40%, 50% or 60%; Supplementary Note 5). We focus only on target 
contrast levels (27%, 28%, 29%, 31%, 32% and 33%) near the reference 
contrast (that is, 30%) according to the definition of linear Fisher 
information.

Dataset and preprocessing. We used chronically implanted Utah 
arrays to record spiking activity. We refer to small multiunit neuronal 
clusters recorded from a given electrode as channels. Twenty-nine and 
20 channels were recorded in monkey 1 and monkey 2, respectively. 
These channels exhibited good responses (SNR >1) on over 80% of 
the recording sessions (see SNR computation in Supplementary Note 
5). Baseline activity matching was performed between sessions for 
multiunit activity data to obtain comparable activity levels across 
sessions.

Behavioural and neural analyses. We noticed that the relationship 
between neural activity and discriminability can change drastically 
during the stimulus presentation period, and through training, the 
improvement in discriminability can also vary over the course of the 
training period. We chose the first four and the last four training ses-
sions as the early and the late phase of training. This choice ensures 
an overall sufficient and comparable number of trials at both pre- and 
post-test for further analyses.

To determine the time window, we systematically varied the time 
window and trained a linear classifier to discriminate between the 
reference and target stimuli, and obtained its performance through 
tenfold cross-validation. We chose the time window with the largest 
change in decoding accuracy between the reference stimulus (30% 
contrast) and the target stimuli (29% or 31% contrast). For monkey 1, the 
chosen time window was 30–130 ms after stimulus onset. For monkey 
2, the time window was 130–230 ms after stimulus onset. Note that this 
choice aims to maximize training effects on population representa-
tions (similar to the decoding analyses for first identifying V3A and 
hMT+ as the ROIs where learning effects are most pronounced in the 
human fMRI study) but does not guarantee the underlying mechanisms 
such as signal separation enhancement and manifold shrinkage. Also, 
varying the time window did not qualitatively change our results. We 
used a simple multivariate Poisson log-normal model (Supplementary 
Note 5, see also refs. 61–64) to estimate the trial-by-trial variability of 
population firing rates. We further use the estimated firing rates and 
covariance to compute all neural metrics mentioned above. We report 
all results in Figs. 7 and 8 for visual comparison with the DCNN and 
fMRI results above.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data to reproduce the figures in the Article and its Supplemen-
tary Information are available via GitHub at https://github.com/
Yu-AngCheng/neural_geometry_VPL. The raw human fMRI and monkey 
physiological data used in this study were all published previously14,37. 
Requests for other datasets should be directed to the original authors 
who collected the data.

Code availability
The code for training neural networks, stimulus generation and neural 
geometry analysis is publicly available via GitHub at https://github.
com/Yu-AngCheng/neural_geometry_VPL.
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