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Visual perceptual learning (VPL), defined as long-term improvement

inavisual task, is considered a crucial tool for elucidating underlying
visual and brain plasticity. Previous studies have proposed several neural
models of VPL, including changes in neural tuning or in noise correlations.
Here, to adjudicate different models, we propose that all neural changes
at single units can be conceptualized as geometric transformations of
population response manifolds in a high-dimensional neural space.
Following this neural geometry approach, we identified neural manifold
shrinkage due to reduced trial-by-trial population response variability,
rather than tuning or correlation changes, as the primary mechanism of
VPL. Furthermore, manifold shrinkage successfully explains VPL effects
across artificial neural responses in deep neural networks, multivariate
blood-oxygenation-level-dependent signals in humans and multiunit
activities in monkeys. These converging results suggest that our neural
geometry approach comprehensively explains a wide range of empirical
results and reconciles previously conflicting models of VPL.

Adapting to new visual environments is crucial for an organism’s
survival in its environment. This ability is well exemplified by visual
perceptuallearning (VPL), whichis defined as long-term performance
enhancements resulting from visual experience?. However, despite
years of researchin systems neuroscience, psychophysics and machine
learning, the mechanisms behind VPL remain mysterious.

It is widely acknowledged that visual training enhances behav-
ioural performance and refines representations in neural populations.
Previous studies using human neuroimaging and monkey neurophysi-
ology have demonstrated a significant improvement in the fidelity
of stimulus encoding within population responses®~. These findings
strongly support the theory thatenhancedssignal-to-noiseratios (SNRs)
serve as a potent computational mechanism for improved neural

representations associated with VPL (Fig. 1e)°"®. However, improved
SNRisanalgorithm-level model, and the exact underlying neural mech-
anisms to achieve improved SNR remain elusive. Several conflicting
models have been proposed on the basis of neural changes associated
with VPL. One model suggests that VPL is associated with changes in
population representations resulting from changesin neuronal tuning
curves, asindicated by sharpened orientation tuning curves in monkey
visual cortex®'°. Another model assumes that changes in population
representations result from a reduction in trial-by-trial co-variation
of neuronal firing rate, known as noise correlations, which have been
observed in association with VPL in both monkeys and songbirds" ™.

The primary conceptual gap inreconciling the conflicting models
of VPL lies in their focus on mechanisms proposed at the single-unit
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level (for example, changes in tuning curves or noise correlations),
whereas the effects of these mechanisms in VPL should be evaluated
atthe populationlevel (thatis,improved population representations).
Although VPL is indeed associated with changes in both single-unit
responses and improved population representations, it remains con-
troversial whether changes in single-unit responses are the actual
cause or merely by-products of improved population representa-
tions. While these conflicting models of VPL capture certain aspects of
the empirical findings, they fail to generate falsifiable predictions
about how changes in single-unit responses contribute to improved
population representations.

A major obstacle to comparing the conflicting models of VPLis the
complexinteractions between different aspects of single-unit responses
(forexample, tuning curves and noise correlations) on population rep-
resentations. Computational neuroscience research has elucidated that
theimpact of noise correlations on population representations heavily
depends onits interaction with tuning curves®. Itisimportant to note
thatreduced noise correlations do not inherently enhance information
in a neural population'™®, Moreover, the challenge is exacerbated by
the fact that their interaction effects are even changing rather than
remainingstable throughoutatraining process. These dynamic changes
further complicate the understanding of how training affects theirinter-
actions. Toovercome this, acomprehensive computational approachis
imperative to quantify and disentangle the effects of different changes
insingle-unit responses, such as sharpened tuning curves and reduced
noise correlations, on neural representations at the population level.

To comprehensively explain these conflicting models, we devel-
oped aneural geometry approach of VPL. In this approach, trial-by-trial
population responses elicited by two stimuli for discrimination form
two differentiable manifoldsinahigh-dimensional neural space. In this
space, changes in single-unit responses (for example, tuning curves,
Fano factor and noise correlations) can be interpreted as changes
in several fundamental and measurable geometric properties (for
example, centroids, size and orientations) of neural manifolds. This
approach allows quantitative comparisons of conflicting models of
VPL and assessments of their contributions to population representa-
tions within the same computational framework. Thus, this approach
directly bridges single-unit responses and population representations
and offers a normative account of the potential neural mechanisms
underlying VPL. Specifically, this approach proposes four possible
training-induced geometric changes (signal enhancement, manifold
shrinkage, signal rotation and manifold warping) that cansummarize
all previous models of VPL. Thus, improved population representa-
tions canbe achieved by one or acombination of the four interpretable
mechanisms.

Our study includes theoretical modelling and empirical tests of
model predictions. First, to assess this neural geometry approach, we
trained deep convolutional neural networks (DCNNs) on the typical VPL
task—orientation discrimination learning—and found that the DCNNs
successfully replicated a wide range of psychophysical and imaging
findings in humans, as well as neurophysiological findings in monkeys.
Second, analyses of the geometric mechanisms mentioned above
suggest that changes in both tuning curves and noise correlations
areindeed present in VPL. Third, and most importantly, our analysis
further revealed that neither changes in tuning curves nor changes
in noise correlations at the single-unit level contributed significantly
toimproved population representations. Surprisingly, we found that
neural manifold shrinkage induced by reduced response variability
emerged as the primary mechanism driving VPL. Our neural geometry
approach generates several empirical testable predictions. We directly
tested these predictions on empirical data across different tasks, dif-
ferent levels of measurement and different brain regions in different
species. Remarkably, we found that the geometry approachincorpo-
rating manifold shrinkage aligned closely with the activity of artificial
neurons in DCNNs trained on VPL of motion direction discrimination

learning task, blood-oxygenation-level-dependent (BOLD) response
changes associated with VPL of motion direction learning in humans,
andthe electrophysiological population response changes associated
with VPL of contrast discrimination in monkey V4.

Results

VPL improves behavioural performance of DCNN

Toelucidate the neurocomputational mechanisms of VPL, we trained a
DCNN (Fig. 1a) to performa classical orientation discrimination task’.
DCNN modelling allows us to easily assess the activity of the whole
populationin each layer and along the entire visual hierarchy. Similar
totheneural networkinref. 19, this neural network inherits the first five
convolutionallayers of AlexNet, which was pretrained on ImageNet™.
Toemulate the decision stage of orientation discrimination, we added
alinear decoding layer and used the logistic function to classify the
activity of the decision unit into a binary perceptual choice (that is,
clockwise or counterclockwise rotation of the target stimulus relative to
thereference stimulus). Importantly, similar to previous psychophysi-
cal studies’”, we systematically manipulated the level of input image
noise (Fig. 1b). The network was trained on stimuli with multiple noise
and contrast levels (see Methods for training details).

To evaluate the performance of the neural network, we assessed
orientation discrimination accuracy as afunction of stimulus contrast
and noise (Fig. 1c,d) and further derived contrast thresholds as a func-
tion ofimage noise level (Fig. If, threshold versus noise (TvN) function).
We found that training improved the network performance in this
taskinalmostall stimulus contrast and noise conditions. The uniform
downshift of TVN functions (Fig. 1f) is consistent with well-established
human psychophysical results (replotted in Fig. 1e)”%.

VPL refines neural population representations in DCNN

We next sought to understand the effects of visual training on
population representations in the network. We performed multivari-
ate decoding analyses in each layer and found that training signifi-
cantly improved decoding accuracy in later layers (Fig. 2f, layers 3-5;
one-sided paired t-test, all ¢35, < —3.59, all P < 0.020; see full statistical
resultsin Supplementary Table 1). More formally, we calculated linear
Fisherinformation, aclassical metricin computational neuroscience,
to quantify how well the two stimuli can be discriminated on the basis
of population responses (Methods). The amount of sensory informa-
tion represented in later layers was indeed significantly enhanced by
training (Fig. 2g, layers 3-5; one-sided paired ¢-test, all 3 < -3.47, all
P <0.018; see full statistical results in Supplementary Table 2). Such
refined neural representation at the population levelis consistent with
the decoding results based on both cortical activity in humans®*** and
multiunit spiking activity in monkeys™".

VPL changes response properties of individual units in DCNN

In addition to the population-level changes, we found that three
key individual-level neural signatures of VPL as documented in the
neurophysiological literature emerge naturally from the neural net-
work training. First, training modestly sharpened the tuning curves
of artificial neurons in layers 1-4 (Fig. 2h and Supplementary Fig. 1), a
finding reported in several previous studies™**. (Fig. 2c, but see also
nullresultsinref.24).Second, we observed a decrease in Fano factor of
individual unitsinallfive layers (Fig. 2i and Supplementary Fig.1), aphe-
nomenonindicatinganincreased SNR of individual neuronal responses
inboth humans® and monkeys'* (Fig. 2d). The sharpened tuning curve
and reduced Fano factor are also consistent with theoretical model-
ling'®. Third, training reduced trial-by-trial noise correlations between
unitsin all five layers (Fig. 2j and Supplementary Fig. 1), afinding also
consistent with several empirical resultsin monkeys" ™. Critically, we
alsofound that thereductionin noise correlation depended on tuning
similarity. Learning reduced the noise correlations between units with
similar tunings (thatis, positive signal correlations) and increased the
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Fig.1| DCNN Modelling of orientation VPL.a,b, ADCNN (a) istrained on an
orientation discrimination task (clockwise, CW or counterclockwise, CCW) with
Gabor stimuliembedded in different levels of image noise (b). ¢,d, Orientation
discrimination accuracy isimproved from pre-test (c) to post-test (d).

e.f, Traininginduces a downshift of the threshold versus noise function (f),

an effect that is qualitatively similar to existing human psychophysical results
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(e, corresponds to the 70.7% accuracy condition in fig. 1 of ref. 7). The absolute
quantitative differences between e and f may be due to differencesin the overall
SNR or the number of layers and units between the human visual system and the
DCNN. Data are presented as mean + s.e.m, with error bars and error shadingsinc
and drepresenting the s.e.m. across four (n = 4) reference orientations.

noise correlations between units with opposite tunings (that is, negative
signal correlations) (Supplementary Fig. 2). Previous theoretical work
hassuggested that the former type of noise correlations is detrimental
forinformation coding and the latter type is beneficial™>'*. The pattern
ofreduced detrimental and increased beneficial noise correlations has
been discovered with learning tasks in songbirds®® and with attention
tasks in monkeys?.

In addition to these classical neurophysiological findings in
VPL, our network also captures some important response properties of
sensory neuronsinthe primate early visual system. First, the relation-
ship between the Fano factor and orientation tuning of the artificial
neurons bears strong resemblances to the empirical measures of V1
neurons in monkeys* (Supplementary Fig. 2). Second, we found a
positive relationship betweensignal correlation and noise correlation
among artificial neuronsinalllayers (Supplementary Fig. 2). This rela-
tionship has alsorecently been documented as a ubiquitous phenom-
enoninboth electrophysiological®* and humanimaging"'®** studies.

Taken together, these results suggest that our DCNNs are power-
ful models and allow us to explore neurocomputational mechanisms
that may be difficult to elucidate in empirical experiments. Here we
focus on the qualitative similarities of learning-induced changes
in DCNN and in certain brain regions. However, we did not attempt
to claim one-on-one mapping between DCNN layers and brain
regions because this requires one to build precise encoding models.

Four mechanisms and the neural geometry approach of VPL

How would improved sensory discrimination manifest in high-
dimensional populationresponses? In the simplified one-dimensional
scenario (Fig. 3a), the classical signal detection theory posits that

better sensory discrimination can be achieved by either increasing
the distance between the means (that is, signal enhancement) and/or
decreasing the variance (thatis, noise reduction) of the two response
distributions. In multivariate population responses, the two stimuli to
be discriminated instead generate two multivariate response distri-
butions (that is, neural manifold) in a high-dimensional neural space
whose dimension corresponds to the number of unitsina population
(Fig. 3b,c). In asimplified visualization in a two-dimensional space
(Fig. 3d), the two distributions are elliptical due to noise correlations
between units. We refer to the vector connecting the mean of the
two distributions as the signal vector and its modulus length (that is,
the Euclidean distance between the two manifold centroids) as the
signal separation.

In the high-dimensional neural space, our neural geometry
approach of VPL proposes that visual training improves sensory dis-
crimination by shaping some fundamental geometric properties of
the neural manifolds. Here, under this approach, there exist only four
possible mechanisms to further separate two neural manifolds (equa-
tion (4) in Methods). First, according to the classical signal detection
theory, the signal enhancement mechanism predicts an increased
Euclidean distance between the centroids of the two neural manifolds
(Fig. 3e). However, we found that the signal separation between the
two manifolds did not significantly increase with learning in all five
layers, and even slightly decreased in the first two layers (Fig. 3f; one-
sided paired t-test, all ¢ 5, > -1.27,all P> 0.146, all Bayes factor BF,;,<1.46;
see full statistical resultsin Supplementary Table 3). Second, the mani-
fold shrinkage mechanism predicts that visual training reduces the
trial-by-trial response variance of units, thereby reducing the size of
the manifolds (Fig. 3g). This is what we found in all five layers (Fig. 3h;
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Fig. 2| DCNN models reproduce empirical findings. a-j, Neural correlates of
VPLin humans (a), monkeys (b-e) and our DCNN (f-j). Visual training improves
stimulus decoding accuracy in related regions in the human brain (a) and
decodingscores of Fisher’s linear discriminant (FLD) in monkey V1 (b). Visual
training sharpens orientation tuning curves of neurons in monkey V4 (c) and also
reduces Fano factors and interneuron noise correlations (d and e). Similar results
are observed in the DCNN: network training also improves decoding accuracy
inlayers 3-5 (layers1and 2: one-sided paired t-test, ¢, > -1.79, all P> 0.08; layers
3-5:one-sided paired t-test, ¢ 5, < -3.59, all P< 0.02; see full statistical results in
Supplementary Table1; f), and aLFI (total informationin each layer divided by
the number of units in that layer) in layers 3-5 (layers 1and 2: one-sided paired
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t-test, t; > -1.84, all P> 0.08; layers 3-5: one-sided paired t-test, all ¢ 5, < -3.47,

all P< 0.02; see full statistical results in Supplementary Table 2; g). Training
sharpens orientation tuning curves of units in layers 1-4 in the DCNN (results
oflayer 4 only are shown in h). Similar reduction of Fano factors and noise
correlations are observed in the DCNN (results of layer 1 only are showniniandj).
The datashown in h-jare the median value across units in alayer. The results of
allfive layers are shown in Supplementary Fig. 1. Panels a-e are reproduced by
the data points shown in the original papers. Data are presented as mean + s.e.m.,
with error bars and error shadings in f-j represent the s.e.m. across four (n = 4)
reference orientations (error shadings in h are small and barely visible).

one-sided paired ¢-test, all ¢5,> 8.39, all P < 0.002; see full statistical
resultsin Supplementary Table 4). We further included two previously
overlooked mechanismsthat can only occurin high-dimensional neural
space and increase manifold discriminability. In the third mechanism,
although visual training did not increase signal separation, it may
change the relative positions of the centroids of the two manifolds and
consequently increase discriminability due to the elliptical shape of
the manifolds (Fig. 3i). Interestingly, we found that the signal vectors
in each layer were rotated by ~-50-70° after training (Fig. 3j). We call
this mechanism signal rotation. Fourth, visual training can warp the
shapes of the high-dimensional neural manifolds while keeping the
size of the manifolds unchanged. Asindicated by the change of covari-
ancestructure, we found that visual training systematically warped the
shape (that s, covariance structures) of the high-dimensional neural
manifolds (Fig. 3k-m). We refer to this mechanism as manifold warping.
Note that manifold warping includes both the changes in correlation

structures and the redistribution of variances across individual units,
while holding the total variance constant. It is manifold shrinkage that
attenuates the total variance.

Information-theoretic analyses quantified mechanisms of VPL
Given the four possible mechanisms (that is, signal enhancement,
manifold shrinkage, signal rotation and manifold warping) and their
complex interaction effects, how can we delineate their respective
contributions to improved population representations? Here we use
linear Fisher information to quantify manifold separability. Besides,
we introduce a stepwise approach to further disentangle the respec-
tive contributions of the four possible mechanisms. Specially, their
respective contributions are assessed by sequentially allowing only
one mechanism to occur and quantifying its endowed changes in the
linear Fisher information of whole populations (Fig. 4a). Forexample,
asshowninFig. 4, we first calculate how muchinformationis enhanced
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by considering only the signal enhancement scenario, then by consider-
ing both signal enhancement and manifold shrinkage, and so on until
allfour mechanisms are included.

Interestingly, we found that the effect of signal enhancement
is minimal in all five layers. This mechanism even reduces stimu-
lus information in layers 1and 2. This is consistent with the reduced
Euclidean distanceinthe first two layers (Fig. 3f). Manifold shrinkage
enhances stimulus information in almost all layers. Interestingly, we
found that signal rotation appears to enhance stimulus information
(Fig.4b, greenbars). Thisisbecause rotation of the signal vectors dis-
rupts their relative parallelism to the covariance direction at pre-test,
making them more orthogonal. Such changes increase the apparent
information. However, the effect becomes minimal when manifold
warpingis further considered (Fig. 4b, magenta bars) because visual
training also warps the covariance direction to realign it with the
post-test signal vector, thereby reducing stimulus information (see
more explanationsin Supplementary Note1and full statistical results
inSupplementary Table 5).

Taken together, we propose an interpretable and quantita-
tive neural geometry approach of VPL where visual training refines
the geometry of representations in a high-dimensional neural space.
Using this approach, we found that three of four possible mechanisms
occur in VPL. Most importantly, we found that manifold shrinkage
in population responses was the key mechanism underlying the
improved population representations induced by visual training in
the DCNN. However, all above findings are the results of theoretical
modelling using our DCNN model of orientation discrimination learn-
ing. Several predictions here have never been tested or reported in
empirical studies. In the rest of ‘Results’, we tested these predictions
across diverse tasks, measurement modalities and species.

Motion direction discrimination learning in DCNN

The above analyses focus only on one classical VPL task—orientation
discrimination and a specific neural network structure—a six-layer
convolutional neural network. In this section, we switch to motion VPL—
another sensory domain that is also widely used in psychophysical®***,
human imaging®* and neurophysiological studies®. Importantly,
motion VPL involves the processing of both spatial and temporal
signals rather than merely static spatial information in orientation
learning. Similarly, we inherited the first six layers of the pretrained
C3D network®® and trained the neural network to perform a motion
direction discrimination task commonly used in psychophysics (see
Methods for stimulus and training details).

In the motion DCNN, we found similar mechanisms as in the
orientation discrimination learning task. First, motion direction
discrimination training improved the behavioural performance of the
network (Fig. 5b). Second, training also enhanced decoding accuracy
and averaged linear Fisher information (aLFI) in later layers (Fig. 5¢,d;

layers4-6:for decoding accuracy: one-sided paired ¢-test, all ¢5) < -7.14,
allP<0.02; for aLFI: one-sided paired ¢-test, all ¢ ;)< —7.22,all P< 0.003;
seefull statistical results in Supplementary Tables 6 and 7), suggesting
that such training refines stimulus representation at the population
level. Third, the effects of motion direction discrimination training
onindividualunitsinlayer 6 are also pronounced (see results for all six
layers in Supplementary Fig. 3). We found that training reduced Fano
factor (Fig. 5e; one-sided paired t-test, t5, = 57.58, P < 0.001, one-sided
95% confidenceinterval (Cl) 3.1 x 102 to =, Cohen’s d = 38.75) and noise
correlations (Fig. 5f; one-sided paired t-test, ¢;,=42.84, P< 0.001,
one-sided 95% Cl4.4 x 10™*to -, Cohen’s d = 2.19). Fourth, training did
not significantly improve signal separation (Fig. 5g; one-sided paired
t-test, t5=-0.98, P=0.198, one-sided 95% Cl - to 1.7 x 102, Cohen’s
d=-0.19, BF,,1.22) but markedly reduced response variance (Fig. 5h;
one-sided paired t-test, ¢ 5, = 59.05, P< 0.001, one-sided 95% C1 2.2 x 107
to, Cohen’s d =43.89).In addition, motion direction discrimination
training also induced two previously overlooked mechanisms: signal
rotation (Fig. 5i) and manifold warping (Fig. 5j,k). Most importantly,
the four mechanisms induced by the training had similar respective
contributions to population representations (Fig. 51).

Motion direction discrimination learning in the human brain
The converging results in the DCNNs of orientation and motion
directiondiscrimination, and the remarkable agreement between our
DCNNs and existing empirical neuroscientific findings, support the
biological plausibility of our DCNNs. However, it remains unknown
whether these predictions are present only in the DCNNs and have
no biological basis in the brain. To address this question, we analysed
BOLD responses in the cortex of human subjects before and after
they were trained on a motion direction discrimination task (Fig. 6a,
ref. 37). Twenty-two human subjects participated in the motion VPL
study. Subjects were trained for 10 days on a fine-direction discrimi-
nation task, and psychophysical and functional magnetic resonance
imaging (fMRI) tests were performed before and after training.

Weidentified the early visual areas (V1-V3), the motion-selective
regions (V3A and hMT+) and the decision region (intraparietal sulcus,
IPS) using independent functional localizer experiments (Fig. 6b).
We estimated single-trial responses of voxels in these regions and
then performed decoding analyses in these predefined regions, find-
ing that motion training significantly enhanced decoding accuracy
(Fig. 6¢; V3A: one-sided paired t-test, ¢, = —2.01, P=0.029, one-sided
95% Cl — to —3.7 x 1073, Cohen’s d = -0.25; hMT+: one-sided paired
t-test, t,, =-1.95,P=0.032, one-sided 95% Cl - t0o-3.3 x 10, Cohen’s
d=-0.50) and aLFI (Fig. 6d) in areas V3A and hMT+ (V3A: one-sided
paired t-test, ¢, = —2.36, P= 0.014, one-sided 95% Cl - t0 -5.0 x 10™*,
Cohen’sd =-0.11; hMT+: one-sided paired t-test, ¢,;, = —1.99, P= 0.030,
one-sided 95% Cl—=t0-2.3 x10™*, Cohen’sd =-0.47), aresult consistent
with several human fMRI studies on motion VPL**%,

Fig. 3 | Four possible mechanisms of VPL in neural populations. a, To enhance
sensory discriminability, the classical signal detection theory posits that signal
enhancement predicts enlarged distances between two mean values while noise
reduction predicts reduced variance of the two stimulus response distributions
(stimland stim2). b, Stimulus orientation as a continuous stimulus variable

can evoke high-dimensional population responses. ¢, If we continuously sweep
the orientation value, the mean of population responses forms a closed-form
ring in a high-dimensional neural space with dimensions equal to the number

of units. The mean population responses to the two stimuliin a discrimination
task are two points on the manifold. d,e, In realistic population responses, the
trial-by-trial population responses to the two stimuli form two high-dimensional
response distributions (that is, neural manifolds, d). The manifolds look elliptical
rather than spherical due to pairwise noise correlations between units. In this
high-dimensional neural space, the signal enhancement mechanism predicts
anincreased Euclidean distance (that is, signal separation, e) between two high-
dimensional response distributions. f, However, no significantincrease in signal

separation is observed in any of the five layers (signal separation decreases in the
firsttwo layers; one-sided paired t-test, all ¢5) > -1.27, all P> 0.146, all BF, <1.46;
see full statistical results in Supplementary Table 3). g, The manifold shrinkage
mechanism predicts reduced variance of the two neural manifolds. h, This is
observedinallfive layers (one-sided paired t-test, all ¢ 5> 8.39, all P< 0.002; see
full statistical results in Supplementary Table 4). 1, The signal rotation mechanism
predicts that the positions of the centroid (that is, mean) of the two manifolds
are changed by training. j, The rotation angle ranges from approximately 50° to
70°inallfive layers. k, The manifold warping mechanism predicts that training
changes the shape of noise correlations. I, Indeed, training mostly reduces the
variance of the high-variance principal components of the population responses.
The principal components (showing only components that account for >99%

of the total variance) are ranked from high to low variance. m, The directions of
the principal components rotate from pre- to post-test. Data are presented as
mean + s.e.m., witherror bars and error shadings in f-mrepresenting thes.e.m.
across four (n = 4) reference orientations.
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We further investigated the coding principles in areas V3A and
hMT+ and repeated the above analyses of DCNNs on fMRI data.
Note that here we performed the same analyses on voxels instead of
artificial neurons in DCNNs. Consistent with the predictions of the
DCNNSs, motion direction discrimination training in humans did
not increase signal separation (Fig. 6e, V3A: one-sided paired ¢-test,
ton=0.06,P=0.526, 0ne-sided 95% Cl-t0 5.3 x 1072, Cohen’sd = 0.01,
BF,,0.45; hMT+: one-sided paired t-test, ¢,;, = 0.36, P= 0.639, one-sided
95% Cl—20t09.5 x107?, Cohen’sd = 0.09, BF,,0.47) but markedly reduced

voxel response variance (Fig. 6f) in both areas (V3A: one-sided paired
t-test, £y, =2.87, P=0.004, one-sided 95% C12.9 x 107 to «, Cohen’s
d=0.16; hMT+: one-sided paired t-test, ¢,;) = 1.97, P= 0.031, one-sided
95% Cl1 4.6 x 107 to =, Cohen’s d = 0.46). Motion direction discrimi-
nation training also significantly reduced intervoxel correlations in
hMT+ (Fig. 6g; one-sided paired t-test, t,;, =1.90, P= 0.035, one-sided
95%C12.5 %1072 to~, Cohen’sd = 0.31). The mechanism of signal rota-
tion was also evident, as indicated by the average ~55° rotation of the
signal vectors in both areas (Fig. 6h). In addition, training warped the
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Fig. 4 | Information decomposition in neural populations. a, The effects of four
mechanisms on population representations are decomposed into four distinct
steps. b, The effects on information gain by sequentially adding each of the four
mechanismsin each layer. For example, the increase in height from the brown

to the blue bars indicates the positive contribution of manifold shrinkage to
encoded stimulus information. Manifold shrinkage significantly increases the
information (one-sided paired t-test, all ¢, >12.1, all P< 0.001); signal rotation
significantly increases the information (one-sided paired -test, all ¢5,> 5.2, all

P <0.006); manifold warping significantly decreases the information (one-sided

Activity of neuron 1 Activity of neuron 1

paired t-test, all ¢3,> 4.3, all P< 0.01). See full statistical results in Supplementary
Table 5. c-f, Strong interaction effects between covariance and signal vector. For
distributions with identical covariance (cand e; d and f), detrimental (c or f)

or beneficial (d or e) effects on discriminability are possible, depending on the
signal vector. Similarly, the effects of the signal vector also depend oniits relative
geometry to the axis of covariance. Data are presented as mean + s.e.m, with error
bars and error shadings in b representing the s.e.m. across four (n = 4) reference
orientations.

magnitude and direction of the covariance (Fig. 6i,j). Mostimportantly,
the respective contributions of these four mechanisms in both brain
regions were similar to the patternin the DCNNs (Fig. 6k).

Contrast discrimination learning in monkey V4

Voxel responses in fMRI studies reflect macroscopicbrain activity that
aggregates the responses of ~300,000-50,000 neurons™, It remains
unclear whether the mechanisms we have discovered so far also exist at
thelocal circuitlevel of single neurons or small clusters of neurons. To

our knowledge, these predictions based on our neural network models
have not been systematically tested using intracranial recording.

To further test our hypotheses on neuronal spiking activity, we
analysed the population responses of V4 neurons in two monkeys
(Fig. 7a) at the early stage and at the late stage of learning to performa
fine-contrast discrimination task (Fig. 7b, ref. 14). Inthis task, eachmon-
key was presented sequentially with two identical Gabor patches with
different contrast levels. The contrast of the reference (thatis, the first)
stimulus was always fixed at 30%, and the contrast of the target (that is,
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Fig. 5| DCNN modelling of motion VPL. a, The DCNN of motion VPL uses 3D
convolutions to process video stimuli. Here we simplify the four-dimensional
feature maps in each convolutional layer and show them as 3D maps only for
illustration purposes. b-d, Training improves DCNN direction discrimination
performance (b), decoding accuracy (c; layers 4-6: one-sided paired t-test, all
) <-7.14,all P<0.028; see full statistical results in Supplementary Table 6)

and aLFI (d; layers 4-6: one-sided paired ¢-test, all ¢ ;)< -7.22, all P< 0.003;;

see full statistical results in Supplementary Table 7). e,f, For single-unit analyses,
motion direction discrimination training also reduces the Fano factor

(e; one-sided paired t-test, ¢ = 57.58, P< 0.001, one-sided 95% C1 3.1 x 102 to e,
Cohen’s d=38.75) and noise correlation (f; one-sided paired t-test, ¢ ;)= 42.84,
P<0.001, one-sided 95% Cl 4.4 x 10 to =, Cohen’s d = 2.19) in layer 6. g,i, Similar
to orientation discrimination training, motion direction discrimination training
does not significantly enhance signal separation (g; one-sided paired ¢-test,

ts =-0.98, P=0.198, one-sided 95% Cl -~ t01.7 x 102, Cohen’sd = -0.19, BF,
1.22) but rotates the position of the two distributions in layer 6 (i). h, Importantly,
training clearly reduces the response variance in layer 6 (one-sided paired ¢-test,
ts =59.05,P<0.001, one-sided 95% C12.2 x 102 to «, Cohen’s d = 43.89).

Jj.k, Specifically, training reduces the variance of the high-variance PCs (j) and
rotates the directions of all PCs (k), indicating a significant effect of manifold
warpinginlayer 6.1, The pattern of information gain associated with the four
possible mechanisms is consistent with that of orientation discrimination
training (one-sided paired t-test, 5= 76.0, P < 0.001 for manifold shrinkage,
t3=3.80,P=0.02forsignal rotation, ¢ =17.7, P < 0.001 for manifold warping).
See results for all six layers in Supplementary Fig. 3. Data are presented as

mean +s.e.m., witherror bars and error shadings in c-Irepresenting the s.e.m.
across four (n = 4) reference directions. Note that some error bars are very small

and barely visible.
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Fig. 6| Motion VPL induces neural geometry changes in the humanbrain.
a,b, Trial diagram and training paradigm (a), and ROIs in a typical subject (b).
c,d, Motion direction discrimination training in humans significantly improves
decoding accuracy (c; for V3A: one-sided paired t-test, ¢,;, = —2.01, P=0.029,
one-sided 95% Cl -~ t0-3.7 x 107, Cohen’s d = —0.25; for hMT+: one-sided paired
t-test, £y =-1.95,P=0.032, one-sided 95% Cl - to -3.3 x 107, Cohen’s d =-0.50)
and aLFI (d; for V3A: one-sided paired t-test, ¢,;, = —2.36, P= 0.014, one-sided
95% Cl—et0-5.0 x10™*, Cohen’s d = -0.11; for hMT+: one-sided paired t-test,
ton=-1.99,P=0.030, one-sided 95% Cl - t0-2.3 x10™*, Cohen’sd =-0.47) in
areas V3A and hMT+, a finding consistent with several existing fMRI studies of
motion VPL. Note that the four data points in V3A appear asoutliersincandd,
but the results still hold if these data points are removed. e-g, Motion direction
discrimination training does not significantly change signal separationin V3A
and hMT+ (e; for V3A: one-sided paired t-test, ¢,;,= 0.06, P= 0.526, one-sided
95% Cl—t05.3 x 1072, Cohen’s d = 0.01, BF,, 0.45; for hMT+: one-sided paired

t-test, £, = 0.36, P=0.639, one-sided 95% Cl - t0 9.5 x 102, Cohen’s d = 0.09,
BF,,0.47) but reduces voxel response variance in V3A and hMT+ (f; for V3A:
one-sided paired t-test, ), = 2.87, P= 0.004, one-sided 95% C1 2.9 x 102 to e,
Cohen’sd=0.16; for hMT+: one-sided paired t-test, ¢,;,=1.97, P= 0.031, one-sided
95% Cl4.6 x 10 to =, Cohen’s d = 0.46) and intervoxel noise correlationsin

hMT+ (g; one-sided paired t-test, £, =1.90, P= 0.035, one-sided 95% C12.5 x 10~
to «, Cohen’s d = 0.31). h—j, Similar to the motion DCNNs, motion direction
discrimination training in humans also rotates stimulus distributions (h),
reduces the variance of high-variance PCs (i) and warps the covariance directions
(§). k, The patterns of information gain associated with the four mechanisms

are consistent with those in the DCNNs of both orientation and motion VPL.

The unit PSC represents percent signal change of BOLD signals. Individual data
points represent the human subjects. Data are presented as mean + s.e.m., with
error barsinall panels representing the s.e.m. across subjects (n =22).*P< 0.05,
*P<0.01.
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Fig. 7| Single-unit analyses of contrast discrimination learning in monkey V4.
a,b, We analysed population responses in area V4 (a) of two monkeys while they
were trained on a fine contrast discrimination task (b). The first four and last four
training sessions were grouped as pre- and the post-test conditions, respectively.
Contrast discrimination training significantly improved behavioural
performance from the early to late stage of training (c; one-sided paired t-test,
ts=—4.61,P=0.003, Cohen’sd =-1.57). ¢, Allindividual data points represent
the six target contrast conditions (27%, 28%, 29%, 31%, 32% and 33%; the reference

Activity of channel 2 (spikes)

contrast is 30%). Each point is averaged over the two monkeys. See plots for
individual monkeys in Supplementary Fig. 4. Data are presented as mean + s.e.m.,
with error bars indicate the s.e.m. across the six conditions (n = 6). d-g, The full
width at half maximum of the response distributions of four pairs of channels at
pre-and post-test (d and e for monkey 1and fand g for monkey 2). The solid lines
represent 30% reference contrast, and the dashed lines represent 29% and 31%
target contrast in monkey 1and monkey 2, respectively. These results show that
learning systematically changes the geometries of the multivariate responses.

the second) stimuli varied systematically near the reference contrast
(thatis, 27%,28%,29%, 31%, 32% and 33%). This contrast discrimination
training significantly improved behavioural performance (Fig. 7c;
one-sided paired t-test, ¢ =—-4.61, P=0.003, one-sided 95% CI —
to -4.7 x1072, Cohen’s d = -1.57). Most importantly, responses of
multiple channels were continuously recorded via chronically
implanted electrodes in area V4 (29 and 20 channels for monkeys
land 2, respectively) throughout training (21and 23 training sessions
for the two monkeys, respectively). This continuous multiunit record-
ing is the key to disentangling population-level changes associated
with VPL.

We used the above analyses (previously applied to DCNNs and
human fMRI data) and applied them to the monkey V4 responses,
and again found highly consistent results (see results of each
monkey in Supplementary Fig. 4). First, contrast discrimination train-
ing significantly improved stimulus information at the population
level (Fig. 8a,b; decoding accuracy: one-sided paired t-test, ¢, = —6.03,

P<0.001, one-sided 95% CI — to -3.6 x 1072, Cohen’s d =-3.10; aLFI:
one-sided paired t-test, ¢5,=-2.21, P=0.039, one-sided 95% CI — to
-52, Cohen’s d=-0.76). Second, at the individual level, contrast dis-
crimination training also significantly reduced Fano factors (Fig. 8c;
one-sided paired t-test, ¢, = 7.28, P< 0.001, one-sided 95% C1 8.8 x 1072
to «, Cohen’s d = 3.43) and noise correlations (Fig. 8d; one-sided
paired t-test, s = 7.46, P < 0.001, one-sided 95% C1 2.6 x 107 to ,
Cohen’s d=5.80), consistent with several existing findings. Inter-
estingly, while the trial-by-trial variance was significantly reduced
after training (Fig. 8f; one-sided paired t-test, £5,=13.24, P< 0.001,
one-sided 95% Cl11.6 x 10 to e, Cohen’s d = 8.70), no apparent change
in signal separation was observed (Fig. 8e; one-sided paired ¢-test,
ts =-1.957, P=0.054, one-sided 95% CI =3.7 x 10" to =, Cohen’s
d=-0.30, BF,; 2.41), suggesting the predominant role of manifold
shrinkage. Importantly, we again observed evidence for signal rotation
(Fig. 8g) and manifold warping (Fig. 8h,i). The stepwise information
analyses also qualitatively replicated the relative contributions of
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Fig. 8| Population activity analyses of contrast discrimination learning
inmonkey V4. a,b, Contrast discrimination training significantly enhanced
stimulus information at the population level (for decoding accuracy: one-sided
paired t-test, ¢, = —6.03, P < 0.001, one-sided 95% Cl -~ to -3.6 x 10, Cohen's
d=-3.10 (a); for aLFI: one-sided paired t-test, ¢, =—2.21, P= 0.039, one-sided 95%
Cl—t0-52, Cohen’sd=-0.76 (b)). c-f, Consistent with VPL in the DCNNs and the
human brain, training monkeys on a contrast discrimination task reduced Fano
factors (c; one-sided paired t-test, t,5,= 7.28, P< 0.001, one-sided 95% C1 8.8 x 1072
to«, Cohen’sd = 3.43), noise correlations (d; one-sided paired t-test, ¢, = 7.46,
P<0.001, one-sided 95% CI12.6 x 102 to =, Cohen’s d = 5.80) and response
variance (f; one-sided paired t-test, ¢, =13.24, P< 0.001, one-sided 95% CI

1.6 X107 to =, Cohen’s d = 8.70) but had no significant effect on signal separation
(e; one-sided paired t-test, ¢, = —1.957, P= 0.054, one-sided 95% C1-3.7 x 10" to =,
Cohen’sd=-0.30, BF,,2.41). g-i, We also found evidence for signal rotation (g)
and manifold warping (h for PC variance and i for PC rotation). j, The stepwise
information analyses also show the similar pattern of the four mechanisms. The
unit ‘spk/s’ indicates the number of spikes per second (that is, firing rate). We
calculate aLFl and information gain using stimulus contrast as decimal values
(thatis, 0.29), so they have arbitrary units. Each point is averaged over the two
monkeys. See plots for individual monkeys in Supplementary Fig. 4. Dataare
presented as mean + s.e.m., with error barsindicating the s.e.m. across the six
conditions (n=6).

the four mechanisms to the total stimulus information encoded in
the population (Fig. 8j).

Discussion

It has been controversial whether single-unit properties such as
sharpened tuning curves®° or reduction of noise correlations'"
contribute to VPL. Our information-theoretic analysis on neural geom-
etry suggested that, although these changes were indeed observed,
they did not contribute significantly to the improved population
representations associated with VPL. Rather, we found that the totally
overlooked mechanism—the response variance of individual units
(that is, manifold shrinkage)—is the primary contributor to the
improved population representations associated with VPL. These
results were further tested on DCNNs, human fMRI data and monkey
neurophysiological data associated with different VPL tasks and
brainregions.

Given the pronounced changes in tuning curves and noise
correlations observed after training, why do they not contribute to
VPL? Conventional approaches treat changes in tuning curves and
in noise correlations as two independent factors mediating VPL.
However, according to the neural geometry approach, the effects
of tuning curve changes can be decomposed into two parts: signal
enhancement independent of noise correlations and signal rotation
interacting with noise correlations (equation (4) in Methods). We
observed minimal contributions of signal enhancement to population

representations. Although we observed the phenomena of signal rota-
tion and manifold warping, their respective contributions appeared
significant but their overall joint effects were minimal because their
respective effects can cancel each other out (Supplementary Fig. 5).
Our finding that manifold shrinkage is the primary contributor to
improved population representations is of unique significance in
constraining the model of VPL. We note that the goal of perceptual
learningis to produce more discriminable population representations
such that downstream decision units can easily read out sensory infor-
mation. However, deciphering the underlying format of discriminable
representations is non-trivial because discriminable representations
canbeachieved by any or combinations of four possible mechanisms.
The key contribution of our work lies in the systematic quantification
of the four mechanisms. In manifold shrinkage, the total variance
of the high-dimensional distributionsis scaled down (that s, Ainequa-
tion (4) is reduced). In other words, the two stimulus distributions
simply shrink to a smaller size (Fig. 4). Note that manifold shrinkage
isindependent of any tuning changes and noise correlation changes.
We also emphasize that manifold shrinkage and manifold warping are
two different mechanisms. In our approach, manifold warping redis-
tributes the variance of the high-dimensional distributionsin different
directions (that s, A; and & in equation (4) are changed) but, unlike
manifold shrinkage, the totalamount of variance remains unchanged.
Thus, the shape of the two stimulus distributions is significantly
warped. We thus emphasize manifold shrinkage as amarker of global
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population responses to differentiate it from trial-by-trial variability
changesinsingle units.

Our neural geometry approach is consistent with the earlier
applications of high-dimensional signal detection theory (MSDT)
in psychophysics and systems neuroscience®*°. MSDT is a powerful
tool for quantifying the discriminability of population representa-
tions. Although we also focus on the discriminability of population
representations during the learning process, we extend this framework
by conceptualizing MSDT as neural geometries to bridge changes in
individual-level responses and changes in population representations.
Specifically, changesinindividual responses (for example, changesin
tuning curves and/or noise correlations) are characterized as geometric
transformations (for example, signal enhancement and manifold warp-
ing) of neural manifolds. These geometric transformations elucidate
how discriminability in high-dimensional response distributions is
enhanced. This geometric perspective enables experimentally testable
predictions about learning effects of on neural manifolds, offering
insights to adjudicate previous theories of VPL.

This high-dimensional geometric approach has been used in
topics such as classification*, attention*” and neural coding*. The
geometric similarities also predict perceptual similarities in humans*.
A recent study® found that such coordinates are not arbitrary, but
privileged. The high-dimensional representational axes are highly
consistent across different humans and even across different
DCNNs. These representational axes lead to better readout or gener-
alization abilities.

Our work unifies several important existing findings of VPL.
First, it haslongbeen hypothesized that noise reductionis animpor-
tant mechanism of VPL®’?, but the exact underlying neural mecha-
nisms remain elusive. Our work demonstrates that at least manifold
shrinkage due to reduced trial-by-trial response variability isa viable
mechanism to support noise reduction. Second, Bejjanki et al.* built
a biological neural network and, similar to our task, simulated the
effects of orientation VPL on Gabor stimuli with different levels of
image noise. The results showed that changes in orientation tuning
curve have only modest effects on psychophysical TvN functions.
Using adifferent network architecture (pretrained artificial DCNNs),
our study replicated the finding of sharpened orientation-selective
tuning curves reported and also showed that the effects of such tun-
ing changes are modest. Our modelling here suggests that sharp-
ened tuning curves do not necessarily lead to improved population
codes, given that other aspects of population responses are also
changed by learning. Third, most existing humanimaging studies and
single-unitstudies on VPL have focused only on changesin population
representations>** or changes inindividual neurons®?, respectively.
Previous studies attempted to address the relationship between the
two levels by projecting high-dimensional neural manifolds onto a
one-dimensional optimal decision plane'>?2. However, we argue that
this approach is inadequate (see analytical derivations in Supple-
mentary Note 2) and we should explicitly disentangle and quantify
the effects of individual factors (see additional analysis in Supple-
mentary Fig. 6).

Itisnoteworthy that ourapproachisbased onthe assumption that
VPLisassociated with changes in neuronal populations. However, we do
not dismiss all neuron-level accounts for VPL. For example, VPL could
be conceptualized asasearchinneuronal space for the mostinforma-
tive neurons for the trained task. These neurons are not necessarily
the ones most responsive to the trained stimuli or those that repre-
sent them most efficiently. For example, post-adaptation orientation
discrimination in expert subjects has been shown to involve learning
that the most informative channel/filter for discrimination is rotated
about 10-20° away from the observed stimulus®’. Similar results were
observed in monkey neurons during training of VPL of orientation
discrimination’. The specific rotation magnitude may depend on the
tuning curves and noise properties of the neurons.

Our study still has several limitations that could be addressed
by future studies. First, although DCNN has recently emerged as a
promising computational framework for modelling, there still exist
clear differences between DCNNs and biological visual systems. Our
models here are all feedforward architectures and lack the compo-
nent of top-down modulation. Top-down modulationis animportant
aspect of supervised training*® and particularly useful for consider-
ing within-trial neural dynamics*. Second, VPL can be achieved by
unsupervised training’® or even pure mental imagery®'. These learn-
ing regimes cannot be explained by current models. Third, this study
examines only how VPLimproves population codes of trained stimuli.
It remains unclear how learning effects generalize to other untrained
stimuli, which is recently proposed as a key question in VPL®. Fourth,
it remains unclear the perceptual consequences predicted by our
neuralgeometry approach, especially by each mechanism. To address
this, we conducted thorough simulations of neural geometric changes
and derived their predictions on perceptual detection and perceptual
estimation tasks (Supplementary Note 3 and Supplementary Fig. 7),
which could be further tested in future studies. Our framework also
provides a theoretical foundation to understand neural underpinnings
of generalization in future studies.

Methods

DCNN modelling of orientation VPL

Stimuli. The network was trained to discriminate whether a target stim-
ulus was tilted 1° clockwise or counterclockwise relative to areference
stimulus. All reference stimuli in the orientation discrimination task
were Gabor patterns (227 x 227 pixels; spatial frequency, 40 pixels per
cycle; standard deviation of the Gaussian spatial envelope, 50 pixels).
The stimuli were varied in contrast (0.1 to 1.0 in 0.1 increments)
and image noise level (eight levels: 0.005, 1, 5, 10, 15, 30, 50 and 75).
Similar to existing psychophysical studies™, the image noise level is
defined as the fraction of pixels randomly selected and replaced by
Gaussiannoise with astandard deviation of 15 gray level units. To mimic
intrinsic sensory noise, we also added Gaussian white noise (standard
deviation 10) to each stimulus'. To match the spatial frequency of
noise and signal, the size of the replaced pixels was set to be 8 x 8.
Four reference orientations (35°,55°,125° and 145°) were used, and we
trained ten DCNNs (ten different random seeds, see below) for each of
the four reference orientations. This yields 40 DCNNs models of VPL.

Neural networks and training. A DCNN”’ was used to simulate the
orientation VPL. We retained the first five convolutional layers of the
pretrained AlexNet and replaced its three fully connected layers with
asinglelinear fully connected layer for perceptual choice. The network
was configured in a Siamese fashion to perform the two-alternative
forced-choicetask: the same network was fed with both the target and
thereference stimuli, producing two scalar outputs, A.and k,, respec-
tively. The network then made the final decision with a probability p
(classification confidence) calculated by the sigmoid function
eh—h:

p @

T 14ehh’

The entire training procedure consisted of two distinct phases:
the pretraining phase and the VPL phase. In the pretraining phase,
the network was trained on full-contrast noiseless stimulus pairs to
understand the task and to establish the pre-test baseline. In the VPL
phase, the network was trained on stimulus pairs across all contrasts
(ten levels) and noise levels (eight levels). The network was trained
for 5,000 epochs in the pretraining phase and 500 epochs in the VPL
phase using the stochastic gradient descent learning algorithm. The
learning rate and the momentumwere set tole > and 0.9, respectively.
The parameters were updated to minimize the cross-entropy loss
between the network outputs and the true stimulus labels. The initial
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parameters in the fully connected layer were set to zero, as in ref. 19,
while those in the convolutional layers were taken directly from a
pretrained AlexNet available at http://dl.caffe.berkeleyvision.org/
bvlc_AlexNet.caffemodel. We trained one model for each of the
four reference orientations, and the entire procedure was repeated
tentimes for each reference orientation to control for randomness. All
model and training procedures were implemented using Python 3.10.9
condaenvironment, including pytorch1.13.1, scikit-learn 1.2.0. Details
ofthefull condaenvironmentare provided via GitHub at https://github.
com/Yu-AngCheng/neural_geometry_VPL.

Behavioural and neural changes. For each reference orientation,
we used the stimuli with the same orientations in pre-/post-tests and
in training phase. The only difference is that stimulus images were
randomly generated in each trial. We derived the behavioural psycho-
metric curves of the network before and after the VPL phase defined
above. Specifically, the behavioural performance of the network was
evaluated by measuringits classification confidence (equation (1)) at
all 80 conditions (10 contrast levels x 8 noise levels) with 1,000 trials
in each condition. The classification confidence of all1,000 trials was
averaged (Fig.1c,d). The behavioural TvN curves (Fig. 1f) of the model
were further derived for comparison with human psychophysical
results. Specifically, for each noise level, a contrast threshold was
obtained by interpolating accuracy-contrast psychometric curves at
the accuracies of 55% and 70% for pre-test and post-test respectively.

To quantify the activity of artificial neurons, ineach trial, the firing
rate of each artificial neuron was measured as the output of local
response normalization or rectified linear unit (ReLU) layers, averaged
over alllocations. Allmeasurements were obtained by simulating 1,000
trials for better estimation. To ensure that units were truly driven by the
stimuli, only units with amean firing rate greater than 0.001 before and
after training were included in the analyses”. To perform population
decoding analyses, we trained a linear classifier on the firing rates of the
artificial neurons to discriminate the target and the reference stimuli.
The classifier was trained on half of the 1,000 simulated trials, while
the other half served as the test dataset.

To characterize the response properties of individual units, we
measured orientation-selective tuning curves by sweeping the orienta-
tion of high-contrast stimuli from 0° to 180°. The tuning curves were
derived by averaging 100 simulated trials for each orientation. The
resulting tuning curves were then smoothed with a10° Gaussian kernel.
To control the heterogenous response range across units, we then
normalized the tuning curves of each unit by its maximum response
and averaged the tuning curves across units to obtain the group-level
tuning curves. The group-level tuning curves were then fitted with
aGaussian function and rescaled to ~0-1for better comparison.

To calculate the Fano factor of each unit, we simulated 1,000 trials
for each reference orientation. The Fano factor of each artificial
neuron is defined as the ratio of the variance of the firing rate to its
mean. Similarly, noise correlations between artificial neurons were
calculated as the correlations between unit firing rates over the 1,000
simulated trials for each reference orientation. We took the median
of the Fano factor across units in each layer to generate the data plot
(Fig. 2i). We took the median of the lower triangle of the noise correla-
tion matrix in each layer to generate the data plot (Fig. 2j). The error
bars in Fig. 2i,j represent the standard errors across four reference
orientations.

Linear Fisher information analyses. To understand how neural acti-
vation contributes to behavioural improvements, we applied linear
Fisher information analysis to population responses. We considered
the firingrates of the same groups of units under the reference and the
target stimulus conditions as two distributionsin a high-dimensional
neural space. We refer to the signal vector as the vector connecting
the mean of the two distributions. A signal vector is calculated as the

difference between the mean firing rates of units to two stimuli. The
signal separation is referred to as the modulus length of the signal
vector, and the angle of the signal vectors before and after training is
referred to as the signal rotation angle.

To measure how much information was contained in a layer per
unit, we calculated the aLFl as follows:

=1
alFl= 1. dfz_zdf @)
. Ap
S

L= 2
_ Mangon ©
> ,

where nisthe number of unitsin alayer, A@is the separation between
the target stimulus and the reference stimulus (that is, 1°), df is
the signal vector, ¥ is the mean of the covariance matrices (that is, 3,
and %,) of units responding to the two stimuli, V is a diagonal matrix
with the variance of the units as the diagonal terms, and Cis the correla-

tion matrix of the population with all diagonal elements equal to 1.
Tofurtherelaborate on the potential mechanisms of the improved
LFI, we performed an eigendecomposition on the covariance matrix
%, where we obtained A, the eigenvalue of £, and &, its corresponding

normalized eigenvector. The aLFl can be rewritten as follows:

. @)

where 1isthe meanvariance, and A; = A x ;. df = % is the unit vector

with length of 1 and direction as the same as the signal vector df.
Accordingto equation (4), we disentangled the potential mechanisms
ofimproved LFlinto four subparts: signal enhancement, reflected by
the modulus length |dfj; manifold shrinkage, reflected by the mean
variance of 1; signal rotation, reflected by the direction of the signal
vector df; and manifold warping, reflected by the relative angle of
both &and A;. Weapplied a stepwise approach to assess their respec-
tive contributions by sequentially allowing only one mechanism to
occur and calculating the resulting changes in aLFl. Specifically, we
first calculated aLFl at pre-test as

2
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Considering only the effect of signal enhancement, we can
calculate its effect as

; 2
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Note that the only difference hereis that the |dfp,e|2in equation (5)
is replaced by the |dfpost|2 in equation (6). The difference between
aLFl and aLFl,. is considered as the information gain introduced by
the signal enhancement mechanism (that is, the brown bars in in
Fig. 4b). Following this idea, we can calculate the stepwise aLFI by
one-by-one considering the effects of manifold shrinkage aLFI,,, signal
rotation aLFl,, and manifold warping (aLFl,,,, or aLFl,) as
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The information gain in Fig. 4b indicates the difference between
aLFl, aLFl,, aLFl; and aLFl,,, (that s, aLFl,.) as compared with
the pre-test baseline aLFl,,.. They are shown as brown, blue, green
and magenta barsin Fig. 4b, respectively.

DCNN modelling of motion VPL

Stimuli. The experiment used random dot motion (RDM) stimuli,
which consist of a cloud of independent moving dots with some degree
of coherenceinagiven moving direction®*. The network was trained to
discriminate whether the moving direction of a target RDM stimulus
was 4° clockwise or counterclockwise relative to its corresponding
reference RDM stimulus. To meet the network’s specifications, the
motionstimuli were16-frame videos (112 x 112 pixels per frame). Within
each frame, ~100 dots were displayed, with each dot represented by
a cross of 3 pixels in both height and width. We set eight coherence
levels (8.84%,12.5%,17.7%, 25%, 35.3%, 50%, 70.7% and 100%) and four
reference directions (45°, 135°, 225° and 315°). The motion speed
was 7.5 pixels per frame. All non-coherently moving dots appeared
randomly in the image. The display of each frame was limited to a
centred circle witha diameter of 112 pixels, with the surrounding areas
displayed in black.

Neural network architecture and training. Our DCNN is a three-
dimensional (3D) convolutional neural network inherited from the
C3D network for action recognition®. The original C3D consists of
ten convolutional layers and three fully connected layers. The main
difference between C3D and AlexNet is that C3D uses 3D convolutional
kernels to process spatiotemporal information. We kept the first six
convolutional layers from the pretrained C3D and replaced the three
fully connected layers with a fully connected layer that outputs asingle
scalar. The number of layers was chosen to (1) keep roughly similar num-
ber of parameters to the orientation DCNN and (2) to roughly match
the number of regions of interest (ROIs) in the human neuroimaging
experiment. Similar to the orientation DCNN, the motion DCNN was
also configured in a Siamese fashion to perform the two-alternative
forced-choice task based on the sigmoid function.

Similar to the orientation DCNN, the entire training procedure
consisted of two phases: the pretraining phase and the VPL phase. Dur-
ing the pretraining phase, the network was trained on full-coherence
noiseless RDM pairs, whereas during the VPL phase, the network was
trained on stimulus pairs across all coherence levels (eight levels). The
network was trained for 1,000 epochs in the pretraining phase and
2,000 epochsinthe training phase using stochastic gradient descent
with a learning rate of 16”7, momentum of 0.9 and weight decay of
0.0005. The parameters were updated to minimize the cross-entropy
loss between the network outputs and the true stimulus labels. The
initial parameters in the fully connected layer were normally rand-
omized, whereas those in the convolutional layers were taken directly
fromapretrained C3D available at https://download.openmmlab.com/
mmaction/recognition/c3d/c3d_sportslm_16x1x1_45e_ucf101_rgb/
c3d_sportsim_16x1x1_45e_ucf101_rgb_20201021-26655025.pth. The
entire procedure was repeated ten times for each reference direction to
control for randomness. All model and training procedures were imple-
mented using Python 3.10.9 conda environment, including pytorch
1.13.1, scikit-learn 1.2.0. Details of full conda environment are provided
via GitHub at https://github.com/Yu-AngCheng/neural_geometry VPL.

Behavioural and neural analyses. The behavioural performance of the
network was also evaluated by its classification confidence (equation
(1)) atall coherence levels before and after the visual training phase. In
addition, the firing rates of artificial neurons were measured on each
trial as the output of the ReLU layers, averaged over all locations and
timepoints. Allmeasurements were taken over 1,000 simulated trials.
To ensure that units were truly driven by the stimuli, only units with
amean firing rate greater than 0.001 before and after training were
includedin subsequent analyses.

To perform decoding analyses, we trained a linear classifier on
the firing rates of the artificial neurons to discriminate between the
target and the reference stimuli. To assess the performance of the
classifier, we split all trials half-half as training and test datasets, and
used the average performance of the test-set. For comparison with
the electrophysiological data, we calculated the Fano factor of each
unit as the ratio of the variance of the firing rate to its mean, and the
noise correlations as the correlation between the firing rates of units
when viewing the same RDM stimulus. In addition, to measure how
muchinformation was contained in alayer per unit, we calculated the
aLFI(see above).

We further validated the computational mechanismsin the motion
direction discrimination task. To this end, the firing rates of the same
group of units under the reference and the target stimuli were also
considered as two distributions in a high-dimensional neural space.
Inthe high-dimensional neural space, we defined signal vector, signal
separation, variance, correlation, signal rotation angle, principal com-
ponent (PC) strength and PC rotation angle as above.

Again, we computed linear Fisher information using a stepwise
approach. For allmodels, we sequentially added signal enhancement,
manifold shrinkage, signal rotation and manifold warping to the cal-
culation of linear Fisher information and examined how the informa-
tion within units varied with all four mechanisms. Figure 5l shows the
results of the stepwise analysisin layer 6. Supplementary Fig. 3 shows
theresultsinall six layers of the motion DCNN.

Human fMRI experiment

The human fMRI experiment data have been published in ref. 37
for different research questions. The core analyses in this study
beyond preprocessing and ROl definitions are specifically designedin
this study. We provide relevant methods as follows and more detailed
methods in Supplementary Note 4 to avoid cross-referencing.

Subjects and experimental procedures. A total of 22 human subjects
(10 males and 12 females, ages 17-25 years) participated in the experi-
ment. All participants had normal or correct-to-normal vision. All par-
ticipants provided writteninformed consent, and the study obtained
approval fromthelocal ethics committee at Peking University (protocol
number 2012-03-09). This study was not preregistered. All subjects
were compensated 20 yuan and 100 yuan for an hour of behavioural
and fMRI experiments, respectively. All participants were blinded to
the study’s objectives.

All subjects were trained on a direction discrimination task
(Fig. 6a; see Supplementary Note 4 for apparatus and stimulus
details). The whole experiment consisted of three phases: pre-test
(2 days), training (10 days) and post-test (2 days). On day 1at pre-test
and day 2 at post-test, subjects were tested on direction discrimina-
tion around 45° and 135° (angular difference 4°, 120 trials for each
direction) to assess their behavioural performance before and after
training. Subjects were trained on the fine-direction discrimina-
tion task for 10 days. Half of the subjects were trained at 45° and the
other halfat 135° (see training details in Supplementary Note 4). The
assignments were randomized across subjects. Training-induced
behaviouralimprovements have beenreportedin our previous work™.
Allvisual stimuli were generated and presented via Psychtoolbox 3.0
in MATLAB2013A.
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To assess the neural changes induced by visual training, two iden-
tical fMRI sessions were performed on day 1 at pre-test and day 2 at
post-test, respectively. Ineach fMRI session, subjects completed four
runs of the motion direction discrimination task. Each run contained
30 trials for 45° and 135° (that is, a total of 120 trials for each direc-
tion). Eachrunalso contained 15 fixation trials, and the trial order was
randomized.

MRI data acquisition. All MRI data were acquired using a 12-channel
phasearray coil onaSiemens Trio 3T scanner at Peking University. The
T1-weighted anatomical data with a resolution of 1 x 1 x 1 mm?3 were
collected for each subject. Echo-planar imaging (EPI) functional data
were collected for the motion direction discrimination task, retinotopic
mapping and motion localizer experiments. EPI data were acquired
using gradient echo-pulse sequences from 33 axial slices, covering
the whole brain. The standard EPI sequence used for data acquisition
was as follows: arepetition time of 2,000 ms, an echo time of 30 ms, a
flip angle of 90° and a resolution of 3 x 3 x 3 mm3. The slice order was
interleaved ascending.

Inaddition to the four runs of the motion direction discrimination
task, we also collected one or two retinotopic mapping runs*>* and a
motion localizer run*to define ROlIs.

MRI data analyses. In Brain Voyager QX (version 2.8.0), the anatomi-
cal data were transformed into the Talairach coordinate space. For
allfunctional data, the first four volumes of each functional run were
discarded to allow the longitudinal magnetization to reach a steady
state. The functional dataunderwent several standard preprocessing
procedures, including slice timing correction, head motion correc-
tion, spatial smoothing, temporal high-pass filtering (generalized
linear model (GLM) with Fourier basis set at two cycles) and linear
trend removal. Brain Voyager QX (version 2.8.0) was also used to
preprocess the data of the retinotopic mapping experiment and the
motionlocalizer experiment. We used the standard phase-encoding
method to define the retinotopic visual areas V1, V2, V3 and V3A
(refs. 56,57). A GLM was then applied to the motion localizer data
to define the motion-selective voxels (hMT+ and motion-selective
voxelsinIPS).

The functional data of the motion direction discrimination
task were preprocessed using SPM12 (www.fil.ion.ucl.ac.uk/spm).
The data were aligned to the first volume of the first run of the first
session, corrected for acquisition delay and then normalized to the
Montreal Neurological Institute (MNI) coordinate space using an
EPI template. We used the GLMdenoise package (version 1.4, http://
www.kendrickkay.net/GLMdenoise/) developed in ref. 58 without
evoking multirun denoise procedures to estimate the single-trial
activity of voxels.

Voxel population response analyses. We adapted the analysis previ-
ously used for artificial neurons in neural networks to the single-trial
fMRI response estimates. To improve SNR, we selected the 60 most
responsive voxels in each ROl at pre-test. We first investigated which
ROl was involved in motion VPL by measuring the discriminability
between two different motion conditions (trained direction, for exam-
ple,45°versus untrained direction, for example, 135°) before and after
training. We trained a linear classifier on the fMRI data to discriminate
between the two motion conditions. To assess the performance of
the classifier, we performed a leave-one-trial-out cross-validation,
and the average performance on the leave-out test trial was used as
the discriminability measure. We also computed the average linear
Fisherinformation (see equations above) between the 45° versus 135°
conditions to quantify stimulus discriminability. We found that motion
direction discrimination training significantly improved stimulus
discriminability in V3A and hMT+. Therefore, we included only V3A
and hMT+ voxels in the subsequently analyses.

Similar to the analyses in the DCNNs, we defined the signal vector,
the signal separation, the variance, the intervoxel correlations, the
signal rotation angle, the PC strength and the PC rotation angle
in the multivoxel high-dimensional space using the same method
defined above (Fig. 6). In addition, we applied the same stepwise
analysis approach of calculating aLFI to the fMRI data (Fig. 6k).

Monkey multiunit recording experiment

Part of the monkey psychophysical and neurophysiological data have
been published in refs. 14,59. These previous studies showed quali-
tatively similar results of the learning-induced reduction in Fisher
information, Fano factor and noise correlations via different analysis
methods. Other results and analyses on the characteristics of popula-
tionresponsesinthisstudy (thatis, Figs.7and 8), especially the valida-
tion of signal rotation and manifold warping mechanisms, as well as
the stepwise information analyses, are key contribution of our study.
We provide relevant methods as follows and more detailed methods
inSupplementary Note 5 to avoid cross-referencing.

Ethics statement and data collection. The Newcastle University
Animal Welfare Ethical Review Board approved all procedures in this
study. Allexperimental procedures were carried outinaccordance with
the European Communities Council Directive RL 2010/63/EC, the US
National Institutes of Health Guidelines for the Care and Use of Animals
for Experimental Procedures and the UK Animals Scientific Procedures
Act. This study included two male monkey monkeys (5 and 14 years of
age). This study was not preregistered. ARRIVE guidelines were used
toreporttheresearch.

Experimental preparation. The surgical procedure is described in
ref. 60 and Supplementary Note 5. The headpost and electrode imple-
mentations are also described in Supplementary Note 5. In brief, in
monkey1,two4 x 5grids of microelectrodes wereimplantedinareaV4;
in monkey 2, one 5 x 5 grid was implanted in V4. These chronically
implantedelectrodes allowed usto record populationactivity inarea V4
over the course of visual training. Importantly, we were able to record
stably from afew small multiunit clusters. The stability of the recording
isshowninref. 14. Stable recording of multichannel neuronal activity
allows analyses of changes in population responsesinduced by training.

Behavioural task and monkey training. All monkey training and
data collections were conducted by CORTEX software (last updated
in 2013, http://dally.nimh.nih.gov/index.html). The monkeys were
trained in acontrastdiscrimination task in which subjects were asked
todecide whether the contrast of a test stimulus was higher or lower as
compared with that of areference stimulus by making asaccade toone
of two distinct locations (Fig. 7b). On each trial, the subject first kept
fixation on the centre of the screen for 512 ms. After 539 ms of fixation,
avertically oriented reference Gabor stimulus with 30% contrast was
presented, centred at the V4 receptive field coordinates. The outer
diameter of the Gabor stimulus was truncated at 16° for monkey 1and
14° for monkey 2. After the Gabor stimulus, monkey 2 experienced an
interstimulus interval of 512 ms. By contrast, monkey 1 experienced a
randomly choseninterstimulusinterval, ranging from 512 to 1,024 ms.
During the interstimulus interval, only the fixation dot was presented.
A test stimulus was then presented for 512 ms. This test stimulus was
identicalin size and orientation to the reference stimulus but differed
in contrast, with the contrast level chosen pseudorandomly. The test
stimulus was followed by another blank period of 512 ms during which
only the fixation dot was visible. After the fixation dot, two target
squares, one black and one white with a size of 0.5° in size, appeared
totheleftandright of the location where the reference and test stimuli
were previously presented. The monkeys were cued to make adecision
oncethe fixation dot disappeared. The monkeys were required to make
asaccadetothe white square withina2° x 2° window if the test stimulus
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had a higher contrast than the reference stimulus. Conversely, they
were expected to make a saccade to the black square if the test stimu-
lus had alower contrast than the reference stimuli. A correct saccade
wasrewarded withafluid reward, whileanincorrectsaccadeledtono
reward and a 0.2 s timeout period.

The two monkeys were first trained on an easy version (target
contrast 5% or 90%) of the contrast discrimination task. After they were
fully familiar with the easy task, the target contrast increased from
2 to 8, 12 and 14 levels. The data correspond to the 14 levels of
target contrast (10%,15%,20%, 25%,27%,28%,29%, 31%, 32%, 33%, 35%,
40%, 50% or 60%; Supplementary Note 5). We focus only on target
contrast levels (27%, 28%, 29%, 31%, 32% and 33%) near the reference
contrast (that is, 30%) according to the definition of linear Fisher
information.

Dataset and preprocessing. We used chronically implanted Utah
arrays torecord spiking activity. We refer to small multiunit neuronal
clustersrecorded fromagiven electrode as channels. Twenty-nine and
20 channels were recorded in monkey 1and monkey 2, respectively.
These channels exhibited good responses (SNR >1) on over 80% of
therecording sessions (see SNR computation in Supplementary Note
5). Baseline activity matching was performed between sessions for
multiunit activity data to obtain comparable activity levels across
sessions.

Behavioural and neural analyses. We noticed that the relationship
between neural activity and discriminability can change drastically
during the stimulus presentation period, and through training, the
improvement in discriminability can also vary over the course of the
training period. We chose the first four and the last four training ses-
sions as the early and the late phase of training. This choice ensures
anoverall sufficientand comparable number of trials at both pre-and
post-test for further analyses.

To determine the time window, we systematically varied the time
window and trained a linear classifier to discriminate between the
reference and target stimuli, and obtained its performance through
tenfold cross-validation. We chose the time window with the largest
change in decoding accuracy between the reference stimulus (30%
contrast) and the target stimuli (29% or 31% contrast). For monkey 1, the
chosen time window was 30-130 ms after stimulus onset. For monkey
2, the time window was130-230 ms after stimulus onset. Note that this
choice aims to maximize training effects on population representa-
tions (similar to the decoding analyses for first identifying V3A and
hMT+ as the ROIs where learning effects are most pronounced in the
human fMRIstudy) but does not guarantee the underlying mechanisms
such as signal separation enhancement and manifold shrinkage. Also,
varying the time window did not qualitatively change our results. We
used asimple multivariate Poisson log-normal model (Supplementary
Note 5, see also refs. 61-64) to estimate the trial-by-trial variability of
population firing rates. We further use the estimated firing rates and
covariance to compute all neural metrics mentioned above. We report
all results in Figs. 7 and 8 for visual comparison with the DCNN and
fMRI results above.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All data to reproduce the figures in the Article and its Supplemen-
tary Information are available via GitHub at https://github.com/
Yu-AngCheng/neural_geometry_VPL.The raw humanfMRIand monkey
physiological data used in this study were all published previously™".
Requests for other datasets should be directed to the original authors
who collected the data.

Code availability

The code for training neural networks, stimulus generation and neural
geometry analysis is publicly available via GitHub at https://github.
com/Yu-AngCheng/neural_geometry_VPL.
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Data collection  CORTEX software (last updated 2013, http://dally.nimh.nih.gov/index.html) and Psychtoolbox 3.0 in MATLAB2013A was used to collect
monkey neurophysiology and human fMRI data.

Data analysis For training deep neural networks, we used a Python 3.10.9 conda environment, including pytorch 1.13.1, scikit-learn 1.2.0. Details of full
conda enviornment are provided at https://github.com/Yu-AngCheng/neural_geometry VPL. For MRI preprocessing, we use SPM 12 and
Brain Voyager QX (version 2.8.0). GLMdenoise package (version 1.4, http://www.kendrickkay.net/GLMdenoise/) was used to perform single
trial general linear modeling. For monkey neurophysiology analysis, we use custom python code provided at https://github.com/Yu-
AngCheng/neural_geometry VPL.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
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All data to reproduce the figures in the main and supplementary information can be found at https://github.com/Yu-AngCheng/neural_geometry_VPL. The raw
fMRI data and the raw monkey neurophysiological data are available upon reasonable request, which is consistent with the original published studies.
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Reporting on sex and gender We collected information about the (biological) sex of the participants (self-reported), and kept the gender balance of the
subjects roughly Twenty-two (12 females and 10 males) with no history of neurological or psychiatric disorders were
recruited in the human fMRI experiment. We did not make any analysis of the gender of the subjects since this was beyond
the scope of our research.

Reporting on race, ethnicity, or Participants were not classified into different race, ethnicity of other social categories.
other socially relevant

groupings

Population characteristics A total of 22 human subjects (10 males and 12 females, ages 17-25) participated in the experiment. All participants had
normal or correct-to-normal vision. None of the participants were aware of the study’s objectives.

Recruitment We recruited participants through an online advertisement placed on a university campus bulletin board system (BBS). They
were primarily undergraduate or graduate students from the universities. There was no self-selection bias.

Ethics oversight The study obtained approval from the local ethics committee at Peking University (Potocol#: 2013-02-09).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Study description This quantitative study examines whether tuning curve changes and/or noise correlation changes occur in the human brain over the
course of visual training, and whether these two factors actually contribute to the improvements of population representations over
the course of visual training.

Research sample A total of 22 human subjects (10 males and 12 females, ages 17-25) participated in the experiment. All participants had normal or
correct-to-normal vision. None of the participants were aware of the study’s objectives. The study was previous published in Jia, K. et
al. (2018). Therefore, the 22 participants are representative in terms of visual perception.

Sampling strategy A convenience sampling is adopted, meaning the participants volunteered to attend the current study after seeing the
advertisement. Sample size are chosen as comparable to previous visual perceptual learning studies using fMRI. The data were
previously published in Jia, K. et al. (2018).

Data collection The random dot motion stimuli were presented to the participants on different display devices. In the behavioral sessions, a 40 cm
wide CRT monitor with a resolution of 1024 x 768 pixels and a refresh rate of 60 Hz was used. In addition, a 48 cm wide LCD projector
with a resolution of 1024 x 768 pixels and a refresh rate of 60 Hz was used to display the stimuli in the fMRI sessions. In all
behavioral experiments, the participants were accompanied only by the researchers. In the fMRI experiments, the participants were
accompanied only by the researchers and extra MRI technicians. A single-blind design was employed, i.e., participants were unware
of the purpose of this study.
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Data exclusions Three participants in the fMRI were excluded due to drop-out and excessive head motion which was established prior to data
collection. This exclusion criteria is common in fMRI research.

Non-participation One participant dropped.

Randomization We only recruit one group of 22 subjects and therefore no group randomization was performed. However, trials of different
conditions are randomized.
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Materials & experimental systems Methods
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Laboratory animals Two male macaque monkeys (5 and 14 years of age) were used in this study.
Wild animals The study did not involve wild animals
Reporting on sex Sex was not considered as a factor in the current study.

Field-collected samples  The study did not contains samples collected from the field

Ethics oversight All procedures were approved by the Newcastle University Animal Welfare Ethical Review Board and carried out in accordance with
the European Communities Council Directive RL 2010/63/EC, the US National Institutes of Health Guidelines for the Care and Use of
Animals for Experimental Procedures and the UK Animals Scientific Procedures Act.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied:
Authentication Describe-any-authentication procedures foreach-seed stock-used-ornovelgenotype-generated-—Describe-any-experiments-used-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

Magnetic resonance imaging

Experimental design

Design type Task state. Event-related design.

Design specifications Data was first published in Jia et al. 2018, and was reanalyzed for this paper. In each fMRI session, subjects completed




Design specifications four runs of the motion direction discrimination task. Each run contained 30 trials for 452 and 1359 (i.e., a total of 120
trials for each direction). Each run also contained 15 fixation trials and the trial order was randomized. In addition to

the four runs of the motion direction discrimination task, we also collected one or two retinotopic mapping runs and a §
motion localizer run to define regions-of-interest. C
0)
Behavioral performance measures  Subjects were tested on direction discrimination around 452 and 1352 (angular difference 42, 120 trials for each _8
direction) to assess their accuracy. 3
—
o
—_ o
Acquisition —
Imaging type(s) functional =
kS
Field strength All MRI data were acquired using a 12-channel phase array coil on a Siemens Trio 3T scanner at Peking University. =
>
(@]
Sequence & imaging parameters The T1-weighted anatomical data with a resolution of 1 x 1 x 1 mm? were collected for each subject. Echo-planar wn
imaging (EPI) functional data were collected for the motion direction discrimination task, retinotopic mapping, and %
motion localizer experiments. EPI data were acquired using gradient echo-pulse sequences from 33 axial slices, covering 3
the whole brain. The standard EPI sequence used for data acquisition was as follows: a repetition time of 2000 ms, an Q
echo time of 30 ms, a flip angle of 902, and a resolution of 3 x 3 x 3 mm?3. The slice order was interleaved ascending. <
Area of acquisition Whole brain
Diffusion MRI [ Jused X Not used

Preprocessing

Preprocessing software In Brain Voyager QX(version 2.8.0), the anatomical data were transformed into the Talairach coordinate space. For all
functional data, the first four volumes of each functional run were discarded to allow the longitudinal magnetization to reach
a steady state. The functional data underwent several standard preprocessing procedures, including slice timing correction,
head motion correction, spatial smoothing, temporal high-pass filtering (GLM with Fourier basis set at 2 cycles), and linear
trend removal. Brain Voyager QX (version 2.8.0) was also used to preprocess the data of the retinotopic mapping experiment
and the motion localizer experiment. We used the standard phase-encoding method to define the retinotopic visual areas
V1, V2, V3, and V3A 44,45. A generalized linear model (GLM) was then applied to the motion localizer data to define the
motion-selective voxels (hMT+ and motion-selective voxels in IPS).

The functional data of the motion direction discrimination task were preprocessed using SPM12 (www.fil.ion.ucl.ac.uk/spm).
The data were aligned to the first volume of the first run of the first session, corrected for acquisition delay, and then
normalized to the MNI coordinate space using an EPI template. We used the GLMdenoise package developed in ref. 46
without evoking multirun denoise procedures to estimate the single trial activity of voxels.

Normalization The data were aligned to the first volume of the first run of the first session, corrected for acquisition delay, and then
normalized to the MNI coordinate space using an EPI template.

Normalization template The functional data were normalized to the MNI coordinate space using an EPI template.

Noise and artifact removal The functional data underwent several standard preprocessing procedures, including slice timing correction, head motion
correction, spatial smoothing, temporal high-pass filtering (GLM with Fourier basis set at 2 cycles), and linear trend removal.

Volume censoring For all functional data, the first four volumes of each functional run were discarded to allow the longitudinal magnetization to
reach a steady state.

Statistical modeling & inference
Model type and settings GLMdenoise package () was used without evoking multirun denoise procedures to estimate the single trial activity of voxels.
Effect(s) tested Effected were test before and after visual perceptual learning
Specify type of analysis: [ | whole brain ROl-based  [_] Both

Anatomical location(s) We used functional ROIs, identified and tested using retinotopic mapping runs and motion localizer runs.

Statistic type for inference cluster-wise (ROI-wise) analysis were applied

(See Eklund et al. 2016)

Correction We did not run whole brain search analysis. Therefore, no correction were applied since we only focused on V3a and hMT+




Models & analysis

n/a | Involved in the study
IZ |:| Functional and/or effective connectivity

IZ |:| Graph analysis

|:| Multivariate modeling or predictive analysis

Multivariate modeling and predictive analysis  Single trial activity of voxels within the ROls were used to predict the conditions of the experiment (452 and
1359). 60 voxels were used for each ROI. A leave-one-trial-out cross validation was applied. The average
accuracy over the test trials was used as the metric.
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