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C O G N I T I V E  N E U R O S C I E N C E

Recurrent inhibition refines mental templates to 
optimize perceptual decisions
Ke Jia1,2,3,4†*, Mengxin Wang4†, Cecilia Steinwurzel4, Joseph J. Ziminski4, Yinghua Xi5,  
Uzay Emir6, Zoe Kourtzi4*

Translating sensory inputs to perceptual decisions relies on building internal representations of features critical 
for solving complex tasks. Yet, we still lack a mechanistic account of how the brain forms these mental templates 
of task-relevant features to optimize decision-making. Here, we provide evidence for recurrent inhibition: an 
experience-dependent plasticity mechanism that refines mental templates by enhancing γ-aminobutyric acid 
(GABA)–mediated (GABAergic) inhibition and recurrent processing in superficial visual cortex layers. We combine 
ultrahigh-field (7 T) functional magnetic resonance imaging at submillimeter resolution with magnetic resonance 
spectroscopy to investigate the fine-scale functional and neurochemical plasticity mechanisms for optimized per-
ceptual decisions. We demonstrate that GABAergic inhibition increases following training on a visual (i.e., fine 
orientation) discrimination task, enhancing the discriminability of orientation representations in superficial visual 
cortex layers that are known to support recurrent processing. Modeling functional and neurochemical plasticity 
interactions reveals that recurrent inhibitory processing optimizes brain computations for perpetual decisions 
and adaptive behavior.

INTRODUCTION
Experience and training are known to mold the brain’s structure and 
functions, facilitating optimal decision-making and skillful actions 
(1, 2). This experience-dependent plasticity has been shown to ex-
tend beyond early development to support the adult brain in 
translating sensory information to perceptual decisions (3, 4). For 
example, training is shown to facilitate discriminating fine feature 
differences (e.g., orientation and motion direction), complex patterns, 
and objects (5, 6). This ability—known as perceptual learning—is 
thought to rely on forming mental templates; that is, internal repre-
sentations of features that are critical for task performance. Train-
ing has been suggested to support the brain’s ability to refine these 
templates and support improved perceptual judgments (7–9). How-
ever, the fine-scale plasticity mechanisms that shape mental tem-
plates and support perceptual learning remain largely unresolved.

Computational studies provide some first insights, suggesting 
that training enhances neural tuning of task-relevant features by al-
tering recurrent connections (e.g., increasing inhibitory connec-
tions) in visual cortex (10, 11). Here, we test the hypothesis that 
γ-aminobutyric acid (GABA)–mediated (GABAergic) inhibition 
drives this recurrent learning-dependent plasticity. In particular, we test 
whether long-term training (across 5 days) on an orientation dis-
crimination task boosts perceptual decisions by altering GABAergic 
inhibition and enhancing representations of task-relevant features 

(i.e., trained orientations) in superficial V1 layers that are known to 
be involved in recurrent processing.

Unraveling fine-scale mechanisms of plasticity in the human 
brain is hampered by the spatial resolution of standard brain imag-
ing techniques. To overcome these limitations, we introduce an 
ultrahigh-field (UHF; 7 T) multimodal brain imaging approach, 
combining magnetic resonance spectroscopy (MRS) with functional 
magnetic resonance imaging (fMRI) at submillimeter resolution. 
MRS allows us to measure inhibitory (GABA) and excitatory [gluta-
mate (Glu)] neurotransmitter signals noninvasively in the human 
brain. UHF fMRI allows us to interrogate brain computations at a 
finer scale and trace brain activity across cortical depths (12); that is, 
middle layers known to be involved in input encoding, superficial 
layers known to be involved in recurrent processing via horizontal 
connections, or deeper and superficial layers known to be involved 
in feedback processing from higher cortical regions (13–16). We use 
information-based analyses of fMRI signals across cortical layers to 
capture mental templates of task-relevant features; that is, fine-
tuned feature representations at the scale of multivoxel patterns. 
This approach allows us to test whether training (i) enhances feature 
discriminability (i.e., representation distance between trained 
versus untrained features) or (ii) reduces representation variance 
across trials.

Our results provide experimental evidence that recurrent inhibi-
tion refines mental templates to optimize perceptual decisions. First, 
we show that training alters orientation-specific representations in 
superficial (rather than middle or deeper) V1 layers by enhancing 
the representation distance (i.e., increasing discriminability of 
trained versus untrained representations) rather than reducing rep-
resentation variance for the trained orientation. These refined men-
tal templates represent familiar orientations in a fine-tuned manner 
and relate to improved perceptual discrimination. Second, we dem-
onstrate that training increases GABAergic inhibition—as mea-
sured by MRS—in early visual cortex that relates to behavioral 
improvement. Modeling interactions across multimodal UHF im-
aging signals provides a mechanistic account of recurrent inhibition 
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that links experience-dependent plasticity across functional and 
neurochemical levels to adaptive behavior. That is, training alters 
GABAergic inhibition, enhancing stimulus-specific representations 
(i.e., representation distance) in superficial V1 layers and unraveling 
human brain circuit mechanisms for perceptual plasticity and adap-
tive behavior at unprecedented resolution.

RESULTS
Training improves performance in 
orientation discrimination
We trained participants (n = 29) on an orientation discrimination 
task (17, 18) for five consecutive days and tested their performance 
on the same task before and after training (Fig. 1, A and B). Partici-
pants’ performance improved during training (Fig. 1C), as indicated 
by a significant decrease (t28 = 7.307, P < 0.001; paired t test) in 
threshold (79.4% correct using three-down-one-up staircase) after 
versus before training.

To determine whether the training effect was specific to the 
trained orientation, we compared participants’ discrimination 
thresholds for two different orientations (i.e., trained versus un-
trained orientations that corresponded to 55° or 125°) before and 
after training. A two-way repeated-measures analysis of variance 
(ANOVA) (orientation × session) showed a significant two-way in-
teraction (F1,28 = 12.338, P = 0.002; Fig. 1D). Post hoc comparisons 
showed significant improvement for both the trained (t28 = 8.914, 
P < 0.001; paired t test) and untrained (t28 = 3.995, P < 0.001; paired 
t test) orientations. Further, to quantify behavioral improvement due 

to training, we calculated a mean percent improvement index (19) 
for each orientation [mean improvement index (MPI) =  (pretest 
threshold − posttest threshold)/pretest threshold × 100%]. We ob-
served that MPI was significantly higher for the trained compared to 
the untrained orientations (t28 = 4.986, P < 0.001; paired t test). To-
gether, these results suggest higher improvement for the trained ori-
entation and partial transfer of learning to the untrained orientation, 
consistent with previous work [e.g., (20)].

Training enhances stimulus-specific representations in 
superficial V1 layers
We have previously shown that training results in layer-specific 
changes in orientation representations in V1; that is, training alters 
orientation processing in superficial rather than middle or deeper 
layers of V1 (21). However, the mechanisms that underlie this layer-
specific perceptual plasticity remain unknown. Here, we ask wheth-
er training facilitates perceptual processing in superficial V1 layers 
by enhancing the stimulus representation (i.e., increased mean rep-
resentation distance across orientations) (22–24) or reducing repre-
sentation variance (i.e., decreased mean distance across blocks for 
each orientation) (3, 25).

First, we corroborated our previous findings showing enhanced 
orientation-specific representations in superficial V1 layers after 
training (21), providing a replication in an independent sample 
(fig. S1). In particular, we used multivoxel pattern analysis (MVPA) 
to test whether training enhances orientation-specific information 
across cortical layers. We segmented visual areas by assigning voxels 
to three layers (superficial, middle, and deeper) using an equivol-
ume approach (Supplementary Text, “Anatomical data analyses” 
subsection). To improve the spatial specificity of the laminar profiles 
and control for vasculature-related confounds, we removed voxels 
that were identified as containing large veins and conducted addi-
tional control analyses. Next, we trained linear classifiers to dis-
tinguish between (i) trained (55° or 125°) versus control (0°) 
orientations and (ii) untrained (125° or 55°) versus control (0°) ori-
entations before and after training.

Our results demonstrate learning-dependent changes (i.e., in-
creased MVPA accuracy) for the trained orientation in superficial 
(two-way repeated-measures ANOVA; n = 28; session × orientation 
interaction, F1,27 = 9.162, P = 0.005, permutation test: P = 0.001), 
rather than middle (F1,27 = 0.531, P =  0.473, permutation test: 
P = 0.453) or deeper (F1,27 = 1.884, P = 0.181, permutation test: 
P = 0.185) V1 layers. Post hoc comparisons showed enhanced dis-
criminability (i.e., MVPA accuracy) after versus before training for 
the trained (t27 = −2.198, P = 0.037, permutation test: P = 0.026) 
compared to the untrained (t27 = 0.929, P = 0.361, permutation test: 
P = 0.368) orientation in superficial layers but not middle (trained 
orientation: t27 = 0.159, P =  0.875, permutation test: P =  0.844; 
untrained orientation: t27 = 0.957, P  =  0.347, permutation test: 
P = 0.386) or deeper (trained orientation: t27 = −1.011, P = 0.321, 
permutation test: P  =  0.300; untrained orientation: t27 = 0.760, 
P = 0.454, permutation test: P = 0.422) layers. These results re-
mained significant in superficial layers [Fig. 2; session × orientation 
(F1,27 = 6.485, P = 0.017, permutation test: P = 0.018); trained ori-
entation: t27 = −2.301, P = 0.029, permutation test: P = 0.028; 
untrained orientation: t27 = 0.715, P = 0.481, permutation test: 
P = 0.470] when we unmixed the signal from adjacent layers to con-
trol for potential draining vein effects (Supplementary Text, “Cor-
recting for vasculature-related effects” subsection). Further, it is 

Fig. 1. Experimental design, task, and behavioral results. (A) Experimental de-
sign. Participants were trained on an orientation discrimination task with feedback 
for five consecutive days. Before and after training, we measured participants’ per-
formance on the same task without feedback during behavioral testing and fMRI 
scanning. (B) Orientation discrimination task. For each trial, participants were 
asked to report whether the second grating was tilted clockwise or counterclock-
wise relative to the first grating. (C) Mean performance across participants at 79.4% 
threshold across training sessions. (D) Mean threshold performance before and 
after training. Error bars indicate SEM across participants.
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unlikely that these results were confounded by mean normalized 
fMRI responses (Supplementary Text, “Univariate analysis” subsec-
tion) and number of voxels used in the MVPA (fig. S2).

Second, we asked whether increased MVPA accuracy for the 
trained orientation reflects enhanced representation distance (22–
24) or reduced representation variance (3, 25). We estimated the 
representation distance versus variance in stimulus processing using 
a Mahalanobis distance analysis. In particular, we estimated the fol-
lowing: (i) representation distance (Fig. 3A), as indicated by cross-
condition Mahalanobis distance; that is, mean distance of each 
block of trained or untrained orientation to the distribution of the 
control orientation blocks and (ii) representation variance (Fig. 3B), 
as indicated by within-condition Mahalanobis distances; that is, 
mean distance of each block of the trained or untrained orientation 
to all the other blocks of trained or untrained orientations. We rea-
soned that if training enhances stimulus representation distance, 
then we would observe increased cross-condition distance between 
trained and control orientations after training. In contrast, if train-
ing reduces representation variance, then we would observe reduced 
within-condition distance for the trained orientation.

Our results demonstrate that training leads to representation dis-
tance enhancement rather than variance reduction in superficial V1 
layers. In particular, a two-way repeated-measures ANOVA on rep-
resentation distance showed a significant session × orientation in-
teraction (F1,27 = 5.328, P = 0.029, permutation test: P = 0.025) in 
superficial (Fig. 3C) but not middle (F1,27 = 0.077, P = 0.783, per-
mutation test: P = 0.813) nor deeper (F1,27 = 0.066, P = 0.800, per-
mutation test: P = 0.799) V1 layers. Post hoc comparisons showed 
significantly enhanced representation distance for the trained (t27 = 
−2.130, P =  0.042, permutation test: P =  0.026) compared to the 
untrained orientation (t27 = −0.478, P = 0.637, permutation test: 
P = 0.622) in superficial V1 layers. In contrast, we did not observe 
significant changes for representation variance (session × orienta-
tion interaction: superficial layers, F1,27 = 0.121, P = 0.730, permuta-
tion test: P = 0.780, Fig. 3D; middle layers, F1,27 = 0.193, P = 0.664, 
permutation test: P = 0.865; deeper layers, F1,27 = 0.168, P = 0.685, 
permutation test: P = 0.717).

Further, we calculated the ratio of representation distance to vari-
ance (distance/variance) for the trained and untrained orientations 
(i.e., ratio of cross-condition distance to within-condition distance) 
before and after training. This ratio provides a robust measure of 
stimulus discriminability, as it indicates the distance between trained 

(or untrained) and control orientation distributions, taking into ac-
count the variability of both orientation (e.g., trained versus control) 
distributions. A ratio larger than 1 indicates that a given data point 
for the trained (or untrained) orientation in multidimensional space 
is closer to the trained (or untrained) orientation distribution com-
pared to the control orientation distribution. A two-way repeated-
measures ANOVA on representation distance/variance showed a 
significant session × orientation interaction in superficial (F1,27 = 
5.645, P = 0.025, permutation test: P = 0.029) but not middle (F1,27 = 
0.359, P = 0.554, permutation test: P = 0.536) nor deeper (F1,27 = 
0.361, P = 0.553, permutation test: P = 0.572) V1 layers (Fig. 3E). 
Post hoc comparisons showed enhanced representation distance/
variance for the trained (t27 = −2.267, P = 0.032, permutation test: 
P  =  0.020) compared to the untrained orientation (t27 = −0.417, 
P = 0.680, permutation test: P = 0.672) in superficial V1 layers.

We next estimated the MPI for representation distance, variance, 
and distance/variance to account for variability in the pretraining 
data (fig. S3). We observed enhanced distance (trained orientation, 
t27 = 2.677, P = 0.012; untrained orientation, t27 = 1.111, P = 0.277) 
and distance/variance (trained orientation, t27 = 2.556, P = 0.017; 
untrained orientation, t27 = 0.998, P = 0.327) for the trained orien-
tation but no significant changes in representation variance (trained 
orientation, t27 = 0.979, P =  0.336; untrained orientation, t27 = 
0.915, P = 0.368). These results suggest that learning enhances the 
representation of the trained orientation in superficial V1 layers, in-
dependent of any differences in representation variance for different 
orientations (i.e., trained, untrained, or control orientation). Last, 
we did not observe any significant differences in representation dis-
tance (t27 = 0.444, P = 0.661, permutation test: P = 0.676), variance 
(t27 = 0.357, P = 0.724, permutation test: P = 0.864), nor distance/
variance (t27 = 0.108, P = 0.915, permutation test: P = 0.970) in the 
pretraining session, suggesting that the learning-dependent changes 
we observed could not be explained simply by differences before 
training. Together, our results suggest that training enhances 
stimulus-specific representations in V1 superficial layers by in-
creasing representation distance between orientations, rather than 
decreasing representation variance as measured at the scale of 
submillimeter voxel patterns.

Training alters GABAergic inhibition in early visual cortex
Using MRS measurements of GABA and Glu, we demonstrate that 
training alters inhibition processes in early visual cortex (Fig. 4, A 
and B). In particular, training significantly increased GABA [refer-
enced to total creatine (tCr): t24 = −2.134, P = 0.043, paired t test; 
Fig. 4C] but did not significantly change Glu (t24 = −0.689, P = 0.497, 
paired t test; Fig. 4D) concentrations in early visual cortex. Note that 
limitations in MRS spatial resolution and the MRS voxel placement 
result in differences in the coverage of the MRS voxel in relation to 
the V1 region of interest (ROI). To relate MRS measurements to V1 
processing, for each participant, we normalized GABA and Glu con-
centrations to the spatial overlap of the MRS voxel with the V1 ROI.

We next tested for learning-dependent changes in the MPI for 
GABA and Glu to account for variability in the pretraining data. We 
observed similar results; that is, learning-dependent increase in 
GABA (t24 = 2.355, P = 0.027) but not Glu (t24 = 0.970, P = 0.342). 
These learning-dependent changes in GABA remained significant 
when we (i) referenced GABA and Glu to water (GABA: t24 = 2.098, 
P = 0.047; Glu: t24 = 0.078, P = 0.939); (ii) controlled for voxel tissue 
composition using alpha correction (GABA: t24 = 2.314, P = 0.030; 

Fig. 2. MVPA before and after training across cortical depths in V1. MVPA ac-
curacy (pattern size = 300 voxels) across cortical depths in V1 (superficial, middle, 
and deeper layers) for the trained (A) and untrained (B) orientations following cor-
rection of vasculature-related effects and unmixing of signals from adjacent layers. 
Error bars indicate SEM across participants.
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Glu: t24 = 0.965, P = 0.344); (iii) or by dividing GABA and Glu con-
centration by 1–fCSF (fraction of cerebrospinal fluid) (GABA: t24 = 
2.334, P = 0.028; Glu: t24 = 1.001, P = 0.327). Note that no signifi-
cant differences were observed across sessions in data quality mea-
sures or the overlap between MRS voxel and V1 ROI (fig. S4 and 
table S1). Further, the learning-dependent changes we observed in 
GABA are unlikely to reflect variations in attention to the task, as 
the task performance was maintained at ~79.4% across sessions, us-
ing staircase-based training.

Further, previous studies and computational models have sug-
gested that both inhibitory and excitatory processes contribute to 
orientation selectivity in V1 (10, 26, 27). In particular, GABA/Glu 
has been shown to relate to behavioral improvement in visual dis-
crimination tasks (28, 29). In light of this previous work, we com-
puted MPI of GABA/Glu ([posttraining ratio − pretraining ratio]/ 
pretraining ratio × 100%) to capture the role of both inhibitory and 
excitatory neurotransmitters in learning. We observed significantly 
higher GABA/Glu after training (t24 = 2.213, P = 0.037; Fig. 4E), sug-
gesting that training alters inhibition/excitation in early visual cortex.

Last, we conducted a control experiment measuring MRS GABA 
and Glu concentrations in early visual cortex in two sessions (pretest 
and posttest) without behavioral training in between. Our results 
did not show significant changes between sessions (GABA: t8 = 
−1.094, P =  0.306; Glu: t8 = −0.781, P =  0.457; GABA/Glu: t8 = 
−1.078, P = 0.313; paired t test), suggesting that the increase we 
observed in GABA after training could not be simply due to repeat-
ed measurements over time. This is consistent with our previous 

findings showing learning-dependent changes in MRS-GABA with-
in (30) and across (31) sessions, compared to lack of significant 
changes between MRS measurements when no training is involved.

Linking functional and neurochemical plasticity to 
behavioral improvement
We next asked whether functional and neurochemical plasticity 
mechanisms interact to predict behavioral improvement. First, fol-
lowing previous work (28, 29), we tested the relationship between 
learning-dependent changes in GABA/Glu and behavioral improve-
ment. Pearson correlation analyses showed a significant positive 
relationship between learning-dependent changes in behavior and 
GABA/Glu (r = 0.456, P = 0.029, two bivariate outliers) after con-
trolling for the overlap between the MRS voxel and the V1 ROI 
(Fig. 5A). This positive relationship remained significant when we 
(i) controlled for behavioral improvement for the untrained orienta-
tion (r = 0.486, P = 0.022), (ii) controlled for behavioral perfor-
mance in the pretraining session (r =  0.604, P =  0.004), and (iii) 
tested for correlation with GABA rather than GABA/Glu (r = 0.485, 
P = 0.026). In contrast, we did not observe significant correlations 
between GABA changes and behavioral improvement for the un-
trained orientation (r = 0.289, P = 0.181).

Second, we show that learning-dependent changes in GABA/Glu 
relate to layer-specific changes in orientation-specific represen-
tations in V1. In particular, Pearson correlation analyses showed 
a significant positive relationship between learning-dependent 
changes in GABA/Glu and representation distance/variance in su-
perficial V1 layers (r = 0.580, P = 0.005, one bivariate outlier) after 
controlling for variability in the overlap between the MRS voxel and 
the V1 ROI across participants, and the representation changes for 
the untrained orientation. This correlation remained significant 
when we (i) controlled for changes in representation distance/
variance in middle (r  =  0.447, P  =  0.042) or deeper (r  =  0.579, 
P = 0.006) layers, (ii) tested for correlation with representation distance 
rather than distance/variance (r = 0.552, P = 0.008), and (iii) tested 
for correlation with changes in GABA rather than GABA/Glu 
(r = 0.462, P = 0.030). These results suggest a strong link between 
enhancement of orientation-specific representations in superficial 
layers and GABAergic inhibition.

Third, we show that learning-dependent changes in orientation-
specific representations in superficial V1 layers relate to behavioral 
improvement. In particular, Pearson correlation analyses showed a 
significant positive relationship of changes in representation dis-
tance/variance with behavioral improvement for the trained orien-
tation in superficial (r = 0.393, P = 0.047) but not middle (r = 0.165, 
P = 0.422) nor deeper (r = 0.061, P = 0.768) layers, after controlling 
for changes in the untrained orientation. Further, the positive rela-
tionship remained significant when we (i) controlled for behavioral 
performance in the pretraining session (r = 0.411, P = 0.041) and 
(ii) tested for correlation with representation distance rather than 
distance/variance (r = 0.401, P = 0.047). In contrast, we did not ob-
serve significant correlations between behavioral improvement for 
the untrained orientation and changes in representation distance/
variance for the trained orientation (superficial V1 layers: r = 0.176, 
P = 0.388).

Further, to test whether the changes we observed were due to 
training rather than potential differences in measurements across 
sessions (e.g., related to MRI data quality or participant state), 
we calculated a learning modulation index (LMI) that contrasts 

Fig. 3. Representation distance and variance analysis. (A) Schematic illustration 
of the representation distance, that is, mean Mahalanobis distance of each block of 
trained or untrained orientation to the distribution of the control orientation 
blocks. (B) Schematic illustration of the representation variance, that is, mean Ma-
halanobis distance of each block of trained or untrained orientation to all the other 
blocks of trained or untrained representations. (C) Representation distance (arbi-
trary unit, a.u.) in superficial V1 layers for the trained and untrained orientations. 
(D) Representation variance (arbitrary unit, a.u.) in superficial V1 layers for the 
trained, untrained, and control orientations. (E) Representation distance/variance 
in superficial V1 layers for the trained and untrained orientations. Error bars indi-
cate SEM across participants.
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differences across sessions for the trained against the untrained 
orientation. In particular, LMI for representation distance/variance 
was calculated as: [posttest ratio for trained orientation − pretest 
ratio for trained orientation] − [posttest ratio for untrained orienta-
tion − pretest ratio for untrained orientation] (17). Note that LMI 
extends beyond MPI that captures only differences across sessions 
for the trained orientation. We observed a significant positive rela-
tionship between learning-dependent changes in LMI for repre-
sentation distance/variance in superficial V1 layers and GABA/Glu 
(Fig. 5B; r = 0.452, P = 0.030, one bivariate outlier) after controlling 
for variability in the overlap between the MRS voxel and the V1 ROI 
across participants. This relationship remained significant when we 
tested for correlation with LMI for distance (r = 0.449, P = 0.031) 
rather than distance/variance. Further, we observed a significant 
positive relationship of LMI for distance/variance with behavioral 
improvement (Fig. 5C) in superficial (r = 0.481, P = 0.010) but not 
middle (r = 0.052, P = 0.791) nor deeper (r = 0.228, P = 0.243) lay-
ers. This relationship remained significant when we (i) tested for 
correlation with LMI for distance (r = 0.411, P = 0.030) rather than 
distance/variance and (ii) controlled for behavioral improvement 
for the untrained orientation (r = 0.428, P = 0.026).

Last, mediation analysis showed that learning-dependent changes 
in GABAergic inhibition drive behavioral improvement by enhanc-
ing orientation-specific representations in V1 superficial layers. In 
particular, mediation analysis (GABA/Glu; distance/variance in V1 
superficial layers, behavioral improvement) showed a significant 
total effect c  =  0.477, z  =  2.879, P  =  0.004, confidence interval 
(CI) = [0.152, 0.802] due to an indirect significant effect of distance/

variance (ab = 0.189, z = 2.316, P = 0.021, CI = [0.029, 0.350]). No 
significant direct effect of GABA/Glu change to behavioral improve-
ment was observed (c′ = 0.288, z = 1.523, P = 0.128, CI = [−0.082, 
0.658]) (Fig. 5D). Further, the mediation effect remained significant 
when we (i) tested for GABA rather than GABA/Glu (ab = 0.150, 
z = 2.299, P = 0.021, CI = [0.022, 0.278]) and (ii) controlled for be-
havioral improvement for the untrained orientation (ab = 0.191, 
z = 2.152, P = 0.031, CI = [0.017, 0.365]). The mediation effect was 
not significant for middle (ab = −0.005, z = −0.100, P =  0.920, 
CI = [−0.102, 0.092]) or deeper (ab = −0.018, z = −0.221, P = 0.825, 
CI = [−0.176, 0.141]) V1 layers. These results suggest a key role of 
GABAergic inhibition in enhancing orientation-specific representa-
tions in superficial layers in primary visual cortex for improved fine 
discriminations; that is, increased inhibition drives behavioral im-
provement by enhancing the discriminability of the trained orienta-
tion in superficial visual cortex layers.

DISCUSSION
We propose a recurrent inhibition plasticity mechanism that refines 
task-relevant feature templates to support our ability for optimized 
perceptual decisions through training. In particular, we use an UHF 
multimodal brain imaging approach to investigate at unprecedented 
resolution the interactions of neurochemical and functional plastic-
ity mechanisms that support our ability to translate sensory infor-
mation to perceptual decisions. First, we leverage the submillimeter 
resolution of 7-T laminar fMRI to interrogate plasticity mechanisms 
across cortical depths that are known to be associated with disso-
ciable neural computations. Our findings provide evidence for 
recurrent experience-dependent plasticity that amplifies the repre-
sentation distance between orientations in V1 superficial layers 
enhancing the discriminability of trained orientations, rather than 
reducing representation variance. Second, we demonstrate that train-
ing results in increased GABAergic inhibition—as measured by 
MRS—in early visual cortex that relates to behavioral improvement. 
Modeling neurochemical and functional plasticity interactions re-
veals that training alters GABAergic inhibition in visual cortex that 
drives improved perceptual judgments by strengthening orientation-
specific representations (i.e., discriminability of the trained orienta-
tion as indicated by representation distance) in superficial V1 layers. 
Together, our findings provide evidence for recurrent inhibition as 
an integrative experience-dependent plasticity mechanism that op-
timizes the neural code for perceptual decisions.

First, previous studies have shown that training enhances the rep-
resentation of task-relevant features at the level of neural populations 
(21, 24, 32). Extending beyond this work, we have recently shown 
that training alters orientation-specific representations in superficial 
layers of primary visual cortex (21), suggesting that training alters 
recurrent processing rather than local information encoding or 
feedback from higher decision-related regions. However, the mecha-
nisms underlying this recurrent functional plasticity remain un-
known. Here, we combine UHF fMRI with information-based 
analysis (i.e., multivoxel pattern classification) to test competing hy-
potheses; that is, training (i) enhances distinctive representations for 
the trained compared to untrained orientations as measured at the 
level of large neural populations by multivoxel patterns and (ii) de-
creases the variance in orientation-specific representations. We cor-
roborate our previous results, showing learning-dependent changes 
in superficial—rather than middle or deeper—V1 layers for the 

Fig. 4. MRS-measured GABA and Glu. (A) MRS voxel placement. The MRS voxel 
was positioned in the right V1 using anatomical landmarks (parallel to the calcarine 
sulcus) on the acquired T1 scan to ensure that voxel placement was consistent 
across participants and sessions. (B) MRS spectra. Example MRS spectra from early 
visual cortex for one participant, showing the GABA and Glu fit using LCModel. 
(C) MRS-measured GABA (referenced to tCr) in pretest and posttest sessions. 
(D) MRS-measured Glu (referenced to tCr) in pretest and posttest sessions. (E) MRS-
measured GABA/Glu in pretest and posttest sessions. Error bars indicate SEM 
across participants.
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trained compared to untrained orientations in an independent sam-
ple. Extending beyond this finding, we provide evidence that this 
recurrent functional plasticity relates to enhanced representation 
distance for the trained orientation in the multivoxel pattern space, 
consistent with previous neurophysiology studies showing that sig-
nal enhancement, rather than internal noise reduction, plays a key 
role in perceptual learning (23, 24). Further, we demonstrate that 
these refined orientation-specific representations relate to behavioral 
improvement, consistent with the role of training in reweighting sen-
sory information to optimize perceptual decisions (22, 33–35).

Second, we test the role of GABAergic inhibition in driving layer-
specific functional plasticity and shaping orientation-specific repre-
sentations. Our results demonstrate increased GABAergic inhibition 
in early visual cortex following extensive (over 5 days) discrimina-
tion training. Further, we demonstrate that increased GABA relates 
to improved perceptual judgments, consistent with previous studies 
linking GABAergic inhibition to performance and learning in per-
ceptual (visual discrimination) and motor tasks (30, 36–41). Note 
that MRS captures neurochemical plasticity related to the visual dis-
crimination task before and after training rather than specifically to 
the trained orientation. Recent developments in functional MRS 
may provide further insights into stimulus-specific GABAergic inhi-
bition (i.e., trained versus untrained orientation) (42, 43).

Third, we provide evidence that GABAergic plasticity shapes 
layer-specific functional plasticity. Combining MRS with UHF fMRI 
suggests that GABAergic inhibition drives improved perceptual 

decisions by enhancing orientation-specific representations in su-
perficial V1 layers. Note that methodological limitations (i.e., coarser 
MRS spatial resolution compared to fMRI) mean that it is not possi-
ble to estimate neurotransmitter concentration across cortical layers 
using MRS. Despite this limitation, mediation analysis showed that 
learning-dependent changes in visual cortex inhibition/excitation 
predict enhanced representation distance for the trained orientation 
in superficial—rather than middle or deeper—V1 layers. These 
GABAergic-driven changes in recurrent visual processing that are 
primarily associated with superficial V1 layers propose a recurrent 
inhibition mechanism of learning-dependent plasticity for optimiz-
ing perceptual judgments. Future advances in magnetic resonance 
spectroscopic imaging may afford higher spatial resolution and sup-
port a tighter link between MRS and fMRI signals.

Our results are consistent with previous neurophysiological 
studies linking GABAergic inhibition (44) and interneurons (please 
cite the paper in the comments section here) to cortical tuning and 
pharmacological interventions showing that GABA agonists en-
hance orientation selectivity in the visual cortex, while blocking 
GABAergic inhibition results in broader neural tuning (45, 46). 
Further, previous studies have suggested that learning-dependent 
changes in superficial V1 layers are due to cross-orientation inhibi-
tion (10, 21), that is, suppression of neurons that are selective for 
similar orientations across columns. Cross-orientation inhibition is 
shown to be more pronounced in superficial layers and support ori-
entation tuning via horizontal connections between V1 columns 

Fig. 5. Linking functional and neurochemical plasticity to behavioral improvement. (A) Skipped Pearson’s correlation showing a significant positive correlation of 
GABA/Glu change in early visual cortex with behavioral improvement. (B) Skipped Pearson’s correlation showing a significant positive correlation of GABA/Glu change 
with representation distance/variance change in V1 superficial layers. (C) Skipped Pearson’s correlation showing a significant positive correlation of representation dis-
tance/variance change in V1 superficial layers with behavioral improvement. (D) Mediation analysis showing that increased GABA/Glu drives behavioral improvement by 
enhancing the discriminability of the trained stimulus in superficial V1 layers.
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(47–50). Thus, training may enhance neural tuning by inhibiting 
orientations close to the trained orientation in superficial V1 layers. 
These results in support of recurrent inhibitory processing via hori-
zontal connections are consistent with computational modeling 
proposing that training sharpens neural tuning by modifying recur-
rent connections (e.g., increasing inhibitory connections) near the 
trained orientation.

It is important to note that our MRS measurements captured 
GABAergic inhibition before versus after training rather than dur-
ing learning. Understanding the dynamics of inhibition and exci-
tation during learning and how they contribute to behavioral 
improvement remains an open question. Previous imaging studies 
showed that training and overtraining changes GABA/Glu in the 
short term, suggesting increased GABAergic inhibition early in the 
training that then returns to baseline levels within hours (28, 29). 
Recent neurophysiological studies showed that longer-term training 
(over 9 days) on a discrimination task resulted in increased stimulus 
selectivity in parvalbumin GABAergic interneurons and pyramidal 
cells, suggesting that changes in activity of GABAergic interneurons 
is observed following consolidation of learning (i.e., after behavioral 
performance has saturated, similar to our findings) (51, 52). Future 
work, introducing measurements during training (i.e., shorter- versus 
longer-term timescales), is needed to understand the dynamics of 
recurrent inhibition during learning.

In sum, our results provide evidence for a recurrent inhibitory 
plasticity mechanism for perceptual learning. Combining multi-
modal UHF brain imaging with information-based analysis, we re-
veal a key role for recurrent inhibition in refining information 
processing for optimized perceptual decisions. Training refines men-
tal templates by fine-tuning the representation of task diagnostic 
features (i.e., trained orientation), suppressing similar orientations 
across cortical columns via horizontal connections in superficial 
layers of primary visual cortex. Uncovering this multimodal plastic-
ity mechanisms at the intersection of neurochemical and functional 
signals provides insights in bridging the knowledge gap between 
animal and human brain circuits that support learning and adaptive 
behavior.

MATERIALS AND METHODS
Experimental design
Participants
Thirty participants (mean age, 22.47 years and SD, 3.27 years) took 
part in the study. Data from one participant was excluded because 
of technical problems during data acquisition. All participants 
were right-handed, had normal or corrected-to-normal vision, 
were not under any prescription medication, and gave written in-
formed consent. Participants were naive to the aim of the study 
and received payment for their participation. All experiments 
were approved by University of Cambridge Ethics Committee 
(PRE.2017.057).
Stimuli
Stimuli comprised oriented sinusoidal gratings that were presented 
at an eccentricity of 5° against a uniform gray background. Gratings 
of random phase had a fixed diameter of 4°, contrast of 0.8, and 
spatial frequency of 1 cycle/deg. The contrast decreased to zero over 
the outer 0.5° radius of the gratings. The stimuli were presented in 
the left visual field, as data were collected from a unilateral MRS 
voxel in the right hemisphere.

Experimental procedure
The study comprised a pretest (two sessions, one behavioral test, 
and one fMRI test), a training (five sessions), and a posttest (two 
sessions, one behavioral test, one fMRI test) phase (Fig. 1A). Each 
session was completed on a separate day. Participants performed a 
two-interval forced choice orientation discrimination task. Partici-
pants’ performance in the task was measured using a three-down-
one-up staircase with 15 reversals converging at 79.4% performance. 
We trained participants with feedback on the orientation discrimi-
nation task presenting gratings at the same orientation and location 
and tested the participants without feedback. Before and after train-
ing in the laboratory, participants performed the orientation dis-
crimination task during functional MRI and MRS data acquisition 
without feedback.

Functional scans were acquired using a two-dimensional 
gradient-echo echo-planar imaging (GE-EPI) sequence (53) at sub-
millimeter resolution (0.8 mm isotropic) and field of view covering 
occipitotemporal and posterior areas. MRS data were acquired 
using a semilocalization by adiabatic selective refocusing (semi-
LASER) sequence. The MRS voxel (15 mm isotropic) was positioned 
in right early visual cortex, parallel to the calcarine sulcus, retino-
topically mapped with the stimulus location (i.e., left visual field), 
avoiding proximity to the dura to minimize macromolecule con-
tamination. To ensure consistent voxel placement across sessions 
and participants, the MRS voxel was manually positioned on the 
basis of each participant’s T1w anatomical image using anatomical 
landmarks (e.g., calcarine sulcus). Voxel position was similar across 
sessions (mean absolute difference in position between voxel center, 
X: M = 0.68 mm, SD = 0.68 mm; Y: M = 1.25 mm, SD = 1.15 mm; 
Z: M = 1.14 mm, SD = 0.72 mm). The mean gray matter (GM) tis-
sue fraction for pretraining and posttraining was 41.61 and 41.30%. 
GM tissue content did not differ significantly between sessions, 
paired t test, t23 = 0.378, P = 0.709.
Statistical analysis
Repeated-measures ANOVA was used to assess differences across 
conditions, for behavioral, fMRI (MVPA), and MRS data. For fMRI 
(MVPA) data, ANOVA results were corroborated by permutation 
tests that have been shown to be more appropriate for comparing 
classification accuracy across conditions (54, 55). We evaluated cor-
relations between fMRI, MRS, and behavioral indices using Pearson’s 
correlation after outlier exclusion [bivariate outliers were identified 
using the Robust Correlation Toolbox (56)]. In particular, bivariate 
outliers were detected using the box-plot rule on z-scored values: The 
algorithm calculates orthogonal distances of all data points from the 
center of the bivariate distribution and marks as outliers data points 
with distances that exceed the interquartile range (37). Correlation 
and mediation analysis was conducted with JASP v0.17.1.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S4
Tables S1 and S2
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